Off-resonant dielectronic recombination in a collision of an electron with a heavy hydrogenlike ion

V. A. Yerokhin

Physikalisches Institut, Heidelberg University St. Petersburg State Polytechnical University

A. Surzhykov

Physikalisches Institut, Heidelberg University GSI, Darmstadt

June 28, Eisenach, EMMI workshop.

RR and DR: different recombination channels?

• To the zeroth order, radiative recombination (RR) and dielectronic recombination can be considered as two independent recombination channels.

• More accurate calculations take into account the quantum interference between RR and DR.

• If we are interested in the effect of the electron-electron interaction, RR and DR cannot be meaningfully separated. The standard DR mechanism is just a resonant part of the electron-electron correction to the RR.

Motivation

• The off-resonant DR can induce the contribution of the same order of magnitude as, e.g., the screening of the nuclear charge by the core electrons.

• This effect is not accounted if one just calculates RR with the correlated wave functions, as is often done (e.g., MCDF calculations).

• In a recent experiment on RR into an H-like uranium [R. Reuschl et al., Phys. Rev. A 77, 032701 (2008)], a deviation from the relativistic one-electron theory was observed on a level of 10%, whereas theoretical estimates for the electron-electron interaction effect yielded about 2%.

Objective

• Perform an *ab initio* calculation of the electron-electron interaction correction to RR of an electron with an (initially) H-like high-Z ion. To the first order in 1/Z, the effect is treated rigorously within QED, whereas higher orders in 1/Z are accounted for approximately within the screening-potential approximation.

• Try to explain the disagreement with the experiment.

• Identify the situations when the off-resonant DR mechanism needs to be taken into account and when it can be omitted.

V.A. Yerokhin and A. Surzhykov, Phys. Rev. A 81, 062703 (2010)

Feynman diagrams

Notations: p denotes the incoming electron, a is the initially bound (core) electron, v is the captured (valence) electron, wavy line with an arrow denotes the emitted electron.

Let's take diagram (4) as an example

The contribution to the transition amplitude from this diagram is

$$au^{(1,4)} = \sum_{n} rac{\left\langle a | oldsymbol{lpha} \cdot \widehat{oldsymbol{u}}^* e^{-ioldsymbol{k} \cdot oldsymbol{r}} | n
ight
angle \left\langle vn | I(arepsilon_p - arepsilon_v) | pa
ight
angle }{arepsilon_a - arepsilon_v + arepsilon_p - arepsilon_n (1-i0)} \,,$$

where I is the operator of the electron-electron interaction: $I(\omega) = e^2 \alpha_{\mu} \alpha_{\nu} D^{\mu\nu}(\omega, x_{12})$ and $D^{\mu\nu}$ is the photon propagator. The sum over n runs over the whole spectrum of the Dirac equation.

The denominator vanishes when $\varepsilon_p = \varepsilon_v - \varepsilon_a + \varepsilon_n > mc^2$ (where ε_n are the Dirac bound-state energies), thus giving the resonances of the standard DR.

To represent the Dirac spectrum, one may use the finite basis set (e.g., B-splines) if the energy in the electron propagator E is E<mc². When E>mc², the exact representation of the Dirac Green function is required.

Interpretation

Screening of the nuclear charge by the core electron (can be accounted for to all orders in 1/Z)

Caution: separate pieces are not gauge-invariant.

Contributions

The total recombination cross section is represented as

$$\sigma = \sigma^{(0)} + \sigma_{\rm scr} + \sigma^{(1)}_{\rm corr} + \sigma^{(1)}_{\rm DR}.$$

• $\sigma^{(0)}$ is the zeroth-order cross section.

• $\sigma_{\rm scr}$ represents the *screening* effect. It corresponds to diagrams (1) and (2) and their iterations. This part is calculated to all orders in 1/Z.

• $\sigma_{\rm corr}^{(1)}$ corresponds to diagram (5) and is interpreted as the correlation effect on the bound-electron wave function.

• $\sigma_{\text{DR}}^{(1)}$ corresponds to diagrams (3), (4), (6), (7), and (8) and is referred to as the (off-resonant) DR correction.

Results: DR resonances

The dielectronic-recombination contribution for the capture into the 1s2s, $1s2p_{1/2}$, and $1s2p_{3/2}$ states of initially H-like uranium as a function of the energy of the incoming electron E, in percent of the zero-order cross section.

Results: total cross section

E [MeV/u]	$\sigma_{ m scr}$ [%]	$\sigma^{(1)}_{ m corr}$ [%]	$\sigma_{\mathrm{DR}}^{(1)}~[\%]$	$\sigma_{ m scr}$ [%]	$\sigma^{(1)}_{ m corr}$ [%]	$\sigma_{\mathrm{DR}}^{(1)}~[\%]$
	$(1s)^2$ state			1s2s state		
1	-0.850	0.138	-0.703	-1.997	-0.232	0.387
5	-0.852	0.146	-0.702	-1.936	-0.217	0.396
10	-0.854	0.156	-0.701	-1.874	-0.201	0.408
50	-0.888	0.217	-0.683	-1.673	-0.124	0.524
75	-0.917	0.245	-0.668	-1.652	-0.101	0.669
100	-0.949	0.268	-0.650	-1.655	-0.086	1.141
125	-0.981	0.286	-0.634	-1.670	-0.076	-6.124
150	-1.013	0.302	-0.617	-1.690	-0.069	1.635
175	-1.043	0.314	-0.601	-1.712	-0.065	0.443
200	-1.072	0.325	-0.587	-1.735	-0.062	-0.044
300	-1.170	0.353	-0.542	-1.817	-0.060	-0.017
500	-1.292	0.378	-0.499	-1.926	-0.068	0.034
700	-1.350	0.387	-0.495	-1.980	-0.079	0.045

Individual two-electron contributions for the capture into the ground and the 1s2s states of initially H-like uranium as a function of the energy of the incoming electron E, in percent of the zero-order cross section.

Results: differential cross section

Individual two-electron contributions for the capture into the ground state of initially H-like uranium as a function of the energy of the incoming electron E.

Conclusions

• Off-resonant DR mechanism provides an important contribution to the total electron-electron interaction effect in the case of capture into the ground state of an initially H-like ion.

• For the capture into excited states, it might be of some significance in the region below the resonant DR threshold, even at relatively large distances from the resonant peaks.

• For the excited states and energies beyond the DR threshold, the effect is very small.

• For the conditions of the experiment [R. Reuschl et al., Phys. Rev. A 77, 032701 (2008)], the calculated two-electron effect is much smaller than the one observed.