Electron collision-spectroscopy of highly charged ions

Outline

Experimental aspects

- Recombination experiments at heavy-ion storage rings
- Determination of absolute rate coefficients
- Experimental energy spread

Selected recent results

- Hyperfine splitting of DR resonances
- Isotope shifts of DR resonances
- KLL DR of hydrogenlike heavy ions
- Hyperfine induced transitions in Be-like ions

Heavy-ion storage rings

- electron cooling

- stochastic cooling

- laser cooling

- Storage of charged particles in well defined states
 - mass
 - charge
 - velocity
- Ion beam cooling
 - velocity spread
 - internal energy

Control of external and internal degrees of freedom

Decay of excited states

Injection of ions in metastable states

Reactions e.g. charge changing electron collisions

AMP

Reaction products

- beams of high directionality
- high particle energies in lab frame

100% detection efficiency

collision experiments with dilute ensembles of particles

tunable relative energy: sub meV to sub MeV

e.g. electron-ion recombination:

$A^{q+} + e^- \rightarrow A^{(q-1)+} + photons$

The Heidelberg storage ring TSR

- twin electron beams -

Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

ĨAM P

Scheme of recombination measurement

The electron beam

acceleration and transverse expansion

Merged-beams kinematics - experimental electron energy spread -

IAMP Stefan Schippers, EMMI workshop "Physics prospects at the ESR and Hightrap", Eisenach, June 28, 2010

Thermionic cathode vs. photocathode

Hyperfine split DR resonances

IAMP

Derivation of the 2s_{1/2}-2p_{3/2} splitting

Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

İAM P

Sensititivity to higher-order QED effects

Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

ÍAM P

Low-energy DR of Be-like Xe⁵⁰⁺ @ ESR

Stefan Schippers, EMMI workshop "Physics prospects at the ESR and Hightrap", Eisenach, June 28, 2010

ĬAMP

Isotope shift of DR resonances

Extraction of $\delta \langle r^2 \rangle$ (142-150) = 1.36 (1)(3) fm²

ESR storage ring at GSI: DR of Li-like Nd⁵⁷⁺

IAM P

Dielectronic recombination of stochastically cooled ions

KLL-DR of hydrogenlike U⁹¹⁺

stochastically cooled ion beam, electron cooler used as target only

ESR experiment: D. Bernhardt, C. Brandau, C. Kozhuharov, et al.

KLL-DR of U⁹¹⁺: Comparison with theory

Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

Transitions in divalent atoms and ions

measurement of an extremely long lifetime

prediction for the ⁴⁷Ti¹⁸⁺(2s2p ³P₀) state: τ = 2.8 s

theory by Marques et al., PRA 47 (1993) 929

needs well defined environment without significant disturbance of the long living state

Stefan Schippers, EMMI workshop "Physics prospects at the ESR and Hightrap", Eisenach, June 28, 2010

Ti¹⁸⁺ DR spectrum at low energies

IAMP Stefan Schippers, EMMI workshop "Physics prospects at the ESR and Hightrap", Eisenach, June 28, 2010

Recombination signal at 0.75 eV vs. time

Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

İAM P

Theoretical 2s2p ³P₀ lifetimes

Ti¹⁸⁺ values

1993	theory:	2.812 s
2007	experiment:	1.8(1) s
2008	theory:	1.487 s
2009	theory:	1.476 s
2010	theory:	1.51 s

Marques et al. PRA 47 (1993) 929 Schippers et al., PRL 98 (2007) 033001 Cheng et al., PRA 77 (2008) 052504 Andersson et al., PRA 79 (2009) 032501 Li & Dong, Plas. Sci. Technol. 79 (2010) 032501

Summary

- High-resolution studies of low-energy DR
 - Hyperfine split DR resonances
 - 2s_{1/2}–2p_{3/2} splitting in Li-like Sc¹⁸⁺ determined with 4.6 ppm accuracy
 - Sensitive to few-body effects on radiative corrections
 - Isotope shifts of DR resonances
- Stochastically cooled ion beam at the ESR
 - KLL-DR of H-like Xe⁵³⁺ and U⁹¹⁺
 - Absolute determination of contribution by Breit interaction
 - Natural linewitdhs almost resolved
- Hyperfine induced transions in Be-like ions
 - First laboratory measument with Ti¹⁸⁺-ions
 - New theoretical results in better agreement than older ones

IAMP Stefan Schippers, EMMI workshop ''Physics prospects at the ESR and Hightrap'', Eisenach, June 28, 2010

Collaborators

Institut für Atom- und Molekülphysik, Justus-Liebig-Universität Gießen: D. Bernhardt, C. Brandau, S. Böhm, J. Jacobi, S. Kieslich, H. Knopp, A. Müller, E. W. Schmidt, W. Shi, D. Yu

Institut für Theoretische Physik, Justus-Liebig-Universität Gießen:

N. Grün, W. Scheid, T. Steih

Max-Planck-Institut für Kernphysik Heidelberg:

M. Grieser, G. Gwinner, M. Lestinsky, D. A. Orlov, R. Repnow, M. Schnell, F. Sprenger, A. Wolf Z. Harmann, U. D. Jentschura, C. H. Keitel

GSI, Darmstadt:

K. Beckert, P. Beller, F. Bosch, B. Franzke, A. Gumberidze, H.-J. Kluge, C. Kozhuharov, P. H. Mokler, F. Nolden, R. Reuschl, U. Spillmann, M. Steck, Th. Stöhlker

Department of Physics, Stockholm University: E. Lindroth, M. Tokman

Department of Physics, St. Petersburg State University A. N. Artemyev, Y. S. Kozhedub, V. M. Shabaev, I. I. Tupitsyn

and

F. J. Currell (Belfast), Z. Stachura (Krakow), A. S. Terekov (Novosibirsk)

Non-comprehensive list of $\delta \langle r^2 \rangle$ values for the isotope pair ¹⁴²Nd - ¹⁵⁰Nd

about 20 publications (optical, muonic, K_{α} x-ray, e-scattering), a few examples :

Method

"combined" analysis:

muonic atoms:

e-scattering, high energy:

- e-scattering, low energy:
- e-scattering, [4]] reanalysed:
- e-scattering, low energy (II):
- optical IS
- optical IS
- optical IS
- optical IS
- K_{α} x-ray
- K_{α} x-ray

-IS (Brandau et al.)

 $\delta \langle \, r^2 \, \rangle$

1.291 fm² [1] 1.324 fm ² [2] 1.345 fm ² [3] -0.569 fm ² [4] 0.765 fm ² [5] 0.220 fm ² [6] 1.205 fm ² [7] 1.259 fm ² [8] 1.205 fm ² [9] 1.205 fm ² [10] 1.259 fm ² [10] 1.353 fm ² [12] 1.36(1)(3)	 [1] I. Angeli, ADNDT 87 (2004) 185 [2] G. Fricke, et al., ADNDT 60 (1995) 177 [3] N.P. Heisenberg, et al., NPA 164 (1971) 340 [4] D.W. Madsen, et al., NPA 169 (1971) 97 [5] L.S. Cardman, et al., NPA 216 (1973) 285 [6] R. Maas, et al., Phys. Lett. B 48 (1974) 212 [7] E. W. Otten, Treat on Heavy-ion Sci., Vol.8 [8] M. Wakasugi, et al., J Phys. Soc. Jap, 59 (1990) 2700 [9] W.H. King et al., Z Phys 265 (1973) 207 [10] M. Hongliang, et al., PRA 44 (1991) 1843 / J Phys B, 30 (1997) 3355 [11] S.K. Battacherjee, et al., PR 188 (1969) 188 / P.L. Lee and F. Boehm, PRC 8 (1973) 819 [12] O.I. Sumbaev, et al., Sov. J. Nucl. Phys. 5 (1967) 387
	C. Brandau, et al., PRL 100 (2008) 073201

^ANd⁵⁷⁺ DR iostope shifts and change in mean square radius

7 data sets for 0 - 3.5 eV: $^{A}Nd^{56+}(1s^{2} 2p_{1/2} 18 I_{j})$ 3 data sets for 12 - 24 eV: $^{A}Nd^{56+}(1s^{2} 2p_{1/2} 19 I_{j})$ $^{A}Nd^{56+}(1s^{2} 2p_{3/2} 8 I_{1/2})$ 1 data set for 25 - 41 eV: $^{A}Nd^{56+}(1s^{2} 2p_{3/2} 8 I_{1/2})$ $^{A}Nd^{56+}(1s^{2} 2p_{3/2} 8 I_{j>/2})$ $^{A}Nd^{56+}(1s^{2} 2p_{3/2} 8 I_{j>/2})$ $^{A}Nd^{56+}(1s^{2} 2p_{3/2} 8 I_{j>/2})$ $^{A}Nd^{56+}(1s^{2} 2p_{1/2} 21 I_{j})$

154 "values" for $2s_{1/2} - 2p_{1/2} \Rightarrow \Delta E (A = 142 - 150) = 40.2 (3)(6) \text{ meV}$ 45 "values" for $2s_{1/2} - 2p_{3/2} \Rightarrow \Delta E (A = 142 - 150) = 42.3 (12)(25) \text{ meV}$

+ full QED calculations (Z. Harman, Y.S. Kozhedub) + NP 0.3 meV for A=150 (2⁺-state,130.21 keV, B(E2 \uparrow) = 2.760 e²b²)

Extraction of $\delta \langle r^2 \rangle$ (142-150) = 1.36 (1)(3) fm²

C. Brandau, et al., PRL **100** (2008) 073201 Y.S. Kozhedub, et al., PRA **77** (2008) 032501; Z. Harman et al., (to be published)

IAM P