Orbital electron capture decay of stored highly-charged ions

EMMI Workshop, 28. June 2010

Nicolas Winckler, MPI-K Heidelberg

- 1. Experimental setup
- 2. Many-ion decay spectroscopy
- 3. Single-ion decay spectroscopy
- 4. Outlook

Production & Separation of Exotic Nuclei

"Cooling": enhancing the phase space density

Electron cooling: G. Budker, 1967 Novosibirsk

Momentum exchange

with a cold, collinear e⁻ beam. The ions get the **sharp velocity** of the electrons, small size and small angular divergence

Broad-band Schottky frequency spectra

Two-body beta decay of stored and cooled highly-charged ions

Decay Schemes

Two-body beta decay

f scales as *m/q*

Two-body β decay: *q* does **not** change

Change of *f* only due to change of mass

EC Decay Rates

¹⁴⁰**P**r

 λ_{EC} (H-like)/ λ_{EC} (He-like) = 1.49(8)

Yu.A. Litvinov et al., Phys. Rev. Lett. 99 (2007) 262501

 λ_{EC} (H-like)/ λ_{EC} (He-like) = 1.44(6)

N. Winckler et al., Phys. Lett. B 679 (2009) 36-40

Electron Capture in Hydrogen-like Ions

Gamow-Teller transition $1^+ \rightarrow 0^+$

I. N. Borzov et al., Phys. Atomic nuclei

Theory: $\lambda(H)/\lambda(He) = (2I+1)/(2F+1)$

Z. Patyk et al., Phys. Rev. C 77 (2008) 014306

	Theory	/ Measurement
Ratio H/He:	$\begin{cases} {}^{140}\text{Pr} \rightarrow 3/2\\ {}^{142}\text{Pm} \rightarrow 3/2 \end{cases}$	1.49 (9) 1.44 (6)

Single ion decay spectroscopy

Examples of Measured Time-Frequency Traces

Continuous observation Parent/daughter correlation Well defined creation time Detection of <u>ALL</u> EC decays Delay between decay and "appearance" due to cooling

Restricted counting statistics

First EC-decay of He-like ¹⁴²Pm ions measured in E082 experiment

¹⁴²Pm⁵⁹⁺

New resonator cavity (2010)124th

the same decay: improvement by a factor of about 100

¹⁴² Nd⁵⁹⁺

Old Schottky pickup (1992)30th harmonic

Folienquelle: Y Litvinov – Email am 17.04.2010

Old Schottky pick up Data provided by the Sony real-time spectrum analyzer in frequency domain representation Welch's overlapped segment averaging

Blackman–Harris window

New resonator cavity Data provided by the Tektronix real-time spectrum analyszer in time domain representation Multitaper method

discrete prolate spheroidal sequences (DPSS)

Comparison Wosa vs MTM for identical input

Welch's overlapped segment averaging (Wosa)

Binning: 1 frame (32 ms)

Binning: 10 frames (320 ms)

Example of one parent ion which decays to one EC-daughter ion

Example with 4 parent ions, 2 EC and 2 β^+ -decays

Another example with 3 parents and 2 EC-decays

FRS-ESR Mass - and Lifetime Collaboration

D. Atanasov, P. Beller[†], K. Blaum, F. Bosch, D. Boutin, C. Brandau, L. Chen, I. Cullen,
Ch. Dimopoulou, H. Essel, Th. Faestermann, B. Franczak, B. Franzke, H. Geissel, E. Haettner,
M. Hausmann, S. Hess, P. Kienle, O. Klepper, H.-J. Kluge, Ch. Kozhuharov, R. Knöbel,
R. Krücken, J. Kurcewicz, S.A. Litvinov, Yu.A. Litvinov, L. Maier, M. Mazzocco, F. Montes,
A.Musumarra, G. Münzenberg, C. Nociforo, F. Nolden, T.Ohtsubo, A. Ozawa, Z. Patyk,
W.R. Plass, A. Prochazka, R. Reuschl, S. Sanjari, Ch. Scheidenberger, D. Shubina, U. Spillmann,
M. Steck, Th. Stöhlker, B. Sun, K. Suzuki, K. Takahashi, S. Torilov, M. Trassinelli, S. Trotsenko,
P.M. Walker, H. Weick, S. Williams, M. Winkler, N. Winckler, D. Winters, T. Yamaguchi

¹⁴⁰Pr⁵⁸⁺ all runs: 2650 EC decays from 7102 injections

¹⁴²Pm: 2740 EC decays from 7011 injections

¹⁴²Pm⁶⁰⁺: zoom on the first 33 s after injection

Decay scheme of ¹²²I

Experiment: 31.07.2008-18.08.2008

Decay Statistics

Correlations: 10.808 injections ~1100 EC-decays Many ions: 5718 injections ~4900 EC-decays

Revolution frequency