Precision spectroscopy through Dielectronic Recombination - the role of calculations

Eva Lindroth , Fabrizio Ferro and Michael Genkin Stockholm University

Examples from recombination of Li-like, Na-like and Be-like ions

Andreas Wolf et al., MPI Heidelberg

Alfred Müller, Stefan Schippers et al, Univ. Giessen

Reinhold Schuch, Istvan Orban et al, Univ. Stockholm

The resonance structure behind

Generally poor knowledge of doubly excited states....

Orban et al J. Phys. B: At. Mol. Opt. Phys. 40 1063

The resonance structure behind

Details in the calculation shifts resonances below or above threshold - Low energy region sensitive

```
relativistic effects, QED, HFS..
```


2nd type of Spectroscopical Information

Lestinsky et al. Phys. Rev. A 70, 042714, Phys. Rev. Lett. 100, 033001

Lestinsky et al. Phys. Rev. A 70, 042714 , Phys. Rev. Lett. 100, 033001

Kieslich et al. Phys. Rev. A 70, 042714, Lestinsky et al. Phys. Rev. Lett. 100, 033001

Lestinsky et al. Phys. Rev. A 70, 042714 , Phys. Rev. Lett. 100, 033001

2p_{3/2}-2s_{1/2} = 44.30943 (20) eV Theory: 44.3091(21) Kozhedub et al 2007 of which screened QED 0.0331 (20) eV The many-body Problem...

Perturbation Theory, H=H₀+V Coupled Cluster

Systematic! ions! Requires a decent starting point

Li-like, Na-like etc. into Be-like, Mg-like

 H_0 ?

"Extended model space" ≈ small CI + MBPT

Be-like, Mg-like etc. into B-like, Al-like

Recombination of Be-like systems?

RMPBT for 3 open shells - under construction

several different series possible...

 $e^{-} + Ge^{28+}(1s^22s^2) \rightarrow Ge^{27+}(1s^22\ell' n\ell'')$

 $e^{-} + Ge^{28+}(1s^{2}2s^{2}) \rightarrow Ge^{27+}1s^{2} (2s^{2}p)^{1}P_{1}9\ell$

uniform shifting ~ expected size of uncalculated QED shifts - allowed

Exp: A. Wolf et al. (TSR)

 $e^{-} + Ge^{28+}(1s^22s^2) \rightarrow Ge^{27+}1s^2 (2p^2)^1D_2 7\ell$

"Tri-electronic" recombination

Exp: A. Wolf et al. (TSR)

Exp: A. Wolf et al. (TSR)

 $e^{-} + Ge^{28+}(1s^{2}2s^{2}) \rightarrow Ge^{27+}1s^{2}(2s^{2}p)^{3}P_{0} 14\ell$

First step towards more complicated systems (3 open shells)

Exp: A. Wolf et al. (TSR)

Nuclear Effects!

Schuch et al. Phys. Rev. Lett. **95**, 183003

 $\Delta E = a/2 (F(F+1) - J(J+1) - I(I+1))$ a = 4.0 meV

 $\Delta E = a/2 (F(F+1) - J(J+1) - I(I+1))$ a = 4.8 meV

 $\Delta E = a/2 (F(F+1) - J(J+1) - I(I+1))$ a = 5.5 meV

Schuch et al. Phys. Rev. Lett. 95, 183003

Schuch et al. Phys. Rev. Lett. 95, 183003

Schuch et al. Phys. Rev. Lett. 95, 183003

• Formation: Time reversal of Antiprotonic Autoionization

Stabilization: Photon emission and/or Electron ejection

Strength ~ $(2J+1)A_a^JA_s/\Sigma A \sim Min (A)$

(electronic case: $S \sim A_{rad}$)

Eur. Phys. J. D 51, 205 (2009)

In connection with experiments by A. Müller, S. Schippers, R. Schuch, A. Wolf and their co-workers

THANK YOU FOR YOUR ATTENTION