The HITRAP Linear Decelerator -Concept and Commissioning Results

Overview of the Decelerator

Description of each Section Principals of RF-Cavities Longitudinal Beam Dynamics Beam Diagnostics Commissioning Results

Forthcoming Tasks

Schematic View of the Decelerator

Operation frequency	108.408 MHz			P	recision trap	
Max. duty cycle	0.5%				貫	
IH-deceleration gain	4 MeV/u → 0.5 Me	V/u (10.5 MV)	experime	ntal setups		
RFQ-deceleration gain	0.5 MeV/u → 6 ke ^v	V/u (1.5 MV)		•		
Max. A/q	3 (includes ²³⁸ U ⁹²	2+)	5	i keV*q		
CI from Double-d	rift-buncher	IH-str	ucture	RFQ	Coolertrap	
		4 MeV/u	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} $	$\frac{1}{\sqrt{eV/u}} \rightarrow 6$	cher	
		0 L	1 2 3	5456	789	10m
_ 🔘					G S	= 1 (
HITRAP	I Dahl Wor	kshon HITR A P-I	ESR-2010 Fiser	nach 28.06.2010		

108 and 216 MHz Double Drift λ/4 Buncher

DDB	4-gap-Buncher	2-gap-Buncher		
f_0	108.4 MHz	216.8 MHz		
V_0	250 kV	65 kV		
Q ₀	13,700	6,700		
Z _{eff}	120 MV/m	36.2 MV/m		
P _{rf}	1.52 kW	1.33 kW		

HITRAP

λ/4 Waveguide with Capacitive Load

Longitudinal Beam Matching

Bunching of the ESR beam

Beam Diagnostics Devices

- matrix of 15x15 holes
- diameter 100µm
- spacing 1.6mm
- drift length 150mm
- 10-bit cooled CCD

- Scintillation screens
 based on YAG single
 crystals
- Capacitive phase probes
- Wire grids
- Faraday cups
- Diamond detector for energy and position
- Emittance meter
- MCP/Dipole magnet for energy detetction

Commissioning of DDB with Ne¹⁰⁺ Beam August 2007

pepper pot emittance meter Ne¹⁰⁺, not cooled in ESR

4 MeV/u

1 63 1

Commissioning of DDB with Ne¹⁰⁺ Beam August 2007

IH-108 MHz Drift Tube Decelerator

Principle of Interdigital H-type structures

Beam Dynamics Basics

Commissioning of the IH-tank with ¹⁹⁷Au⁶⁵⁺ Beam

- IH commissioning: deceleration from 4 MeV/u to 0.5 MeV/u
- Energy signal on single crystal diamond detector:

beam energy profile on diamond detector

Retuning of the IH- Gap Voltage Distribution

Bead Pull RF-Measurements at the IH-structure

Resonance profile with center frequency at 108.44 MHz

Electric field (E²) distribution

Energy Spectrum of ⁸⁶Kr³³⁺ (March 2010)

RFQ Decelerator

Rebuncher and RFQ-Tank with Integrated Debuncher

spiral type rebuncher

	RFQ			
f_0	108.4 MHz			
r ₀	4 mm			
length	1.9 m			
cells	143			
Z _{eff}	120 kV/m			
V _{rod}	75 kV			

spiral type debuncher

4-rod RFQ

Electric and Magnetic Fields of an RFQ

Reduction of Energy Spread

First Beam through the RFQ-Tank (⁸⁶Kr³³⁺, March 2010)

Space Charge Forces Negligible?

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

HITRAP

Status and Forthcoming Tasks

Status:

- Beams of different ion species were decelerated from 4 MeV/u to 500 keV/u
- Beam quality and intensity meet the expectations of the TDR.
- Nevertheless, potential for improvements is given (longitudinally + transversally)

To do:

- Beam experiments for definition of the working points (phase and amplitude) of RFQ, rebuncher, debuncher : needs additional installation of a Wienfilter behind IH-tank and energy analysis by a MCP/dipole device behind the RFQ
- Increase of the diameter of the diaphragma in front of the DDB to enable improved transverse beam optics and hence particle transmission
- Finally, developing of a scalable data compilation comprising all values of 26 magnetic, 12 rf set up parameters, and the electrostatic lenses

HITRAP Projekt Collaboration

F. Herfurth¹, O. Kester², K. Blaum^{3,4}, M. Block¹, G. Clemente¹, L. Dahl¹, S.
Eliseev³, P. Forck¹, M. Kaiser¹, H.-J. Kluge¹, C. Kozhuharov¹, S. Kozudowski¹, G. Maero¹, F. Nolden¹, B. O'Rourke¹, J. Pfister⁵, W. Quint¹, U. Ratzinger⁵, A. Sauer⁵, A. Schempp⁵, A. Sokolov¹, M. Steck¹, T. Stöhlker^{1,4}, M. Vogel¹, W. Vinzenz¹, G. Vorobjev¹, D. Winters¹ and the HITRAP collaboration

¹GSI Darmstadt ²National Superconducting Cyclotron Laboratory, MSU, East Lansing ³Max-Planck-Institut für Kernphysik Heidelberg ⁴Ruprecht Karls-Universität Heidelberg ⁵J. W. Goethe-Universität Frankfurt am Main

Beam Parameters Along the Decelerator

	DDB	IH- structure	Re- buncher	RFQ+de- buncher
E entrance [MeV/u]	4	4	0.5	0.5
E exit [MeV/u]	4	0.5	0.5	0.006
β exit	0.093	0.033	0.033	0.0036
$\epsilon_{xx'} (_{yy'})$ normalized (entrance) [mm mrad]	0.2	0.21	0.3	0.34
phase spread [°] entrance	240 (accepted)	20	75	45
energy spread [%] entrance	0.01	3.5	5	5
$\epsilon_{xx'} (_{yy'})$ normalized (exit) [mm mrad]	0.21	0.3	0.34	0.36
phase spread [°] exit		20	70	300
energy spread [%] exit	3.5	6	5	8
Expected transmission [%]	98	70	95	85

Kapchinsky Theory for Periodic Channels

Assuming low beam current and smooth approximation, a local normalized acceptance V_k for each RFQ cell can be calculated from the Floquet functions, which are the solution of the Mathieu-Hill equation for the particle motion.

$$V_k = v_f \frac{a^2}{\lambda} \qquad v_f = \frac{1}{\rho^2}$$

where ρ is a module of the Floquet function, a - aperture (radius) of the cell, λ - wave length of the operating frequency; v_f can be treated as a minimum of the phase advance σ on the focusing period.

In presence of the beam current, a tune depression of σ and v_f can be calculated using Coulomb parameter h, which combines parameters of the beam and accelerating channel:

j - beam brilliance, *I* - beam current, V_p - normalized beam emittance, *B* - ratio of the peak current to the pulse current, $I_0=3.13\cdot10^7 \cdot A/Z$ - characteristic current, *A*, *Z* - mass and charge numbers, σ_0 - phase advance for "zero" current, β - relative velocity of particle.

GSÌ

RFQ Input and Output Emittances

RFQ Decelerator, F=108.408 MHZ, U=77.5KV NCELL=127 , NPOINT=2479 , NTOTAL=2500 , Iin=0 mA

RFQ Decelerator, F=108.408 MHZ, U=77.5KV NCELL=127, NPOINT=2479, NTOTAL=2500, Iin=0 mA

First Beam through the RFQ-Tank (86Kr³³⁺)

low energy, low intensity MCP-based imaging detector

BB1: 8,5V & 0° BB2: 6,1V & 150°

Phase Probes

- green trace BB2 signal
- blue trace –
 BB1 signal
- yellow trace –
 DP4
- red trace DP3

IH RF- problems

- green trace IH amplitude error signal
- blue trace IH phase error signal
- yellow trace IH RF envelope
- red trace RFQ RF envelope

HITRAP – ReBuncher & RFQ

- deceleration from 0.5 MeV/u to 6 keV/u
- Installed, first beam through

Radio Frequency Quadrupole

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

HITRAP

RFQ beam gymnastics

HITRAP decelerator cavities

RFQ – Decelerator with integrated Debuncher

Radio Frequency Quadrupol (RFQ)

r _o	4 mm		
Z	120 kΩm		
Length	1.9 m		
cells	143		
V _{rod}	70 kV		

- Rod design completed
- beam dynamics calculations of de-buncher is completed
- > tank is delivered

Parameters of the Cavities

DDB	4-gap-Buncher	2-gap-Buncher	111	IH		RFQ		
f_0	108.4 MHz	216.8 MHz	f ₀	108.4 MHz	f_0	108.4 MHz		
V ₀	250 kV	65 kV	Q ₀	25,750	r ₀	4 mm		
Q ₀	13,700	6,700	Z _{eff}	285.084 MV/m	length	1.9 m		
Z_{eff}	120 MV/m	36.2 MV/m	E _{eff}	1,3 A/q * MV/m	cells	143		
P _{rf}	1.52 kW	1.33 kW	length	2.64 m	Z _{eff}	120 kV/m		
			P _{rf}	174 kW	V _{rod}	75 kV		
			V _{rod}	75 kV				
			gaps	25	IV -			

GSI

ESR – Rebunching at 4 MeV/u

HITRAP – Linear Decelerator

Beam that will be available to users:

 type
 A/q < 3 (U⁹²⁺ ...)

 ions/pulse
 10⁵

 energy
 keV/q ... meV/q

Instrumentation for beam diagnostics

- Scintillation screens based on YAG single crystals
- Capacitive phase probes
- Wire grids
- Faraday cups
- **Diamond detector** for energy and position

HITRAP – Double Drift Buncher

HITRAP – ReBuncher & RFQ

- deceleration from 0.5 MeV/u to 6 keV/u
- installed

Best Spectrum 2010

HITRAP

GSľ

Remember 2009

beam profile separation of 0.5 and 4 MeV/u beam on diamond

GSI

Energy Measurement by MCP in 2010

- g-factor of the bound electron
- hyperfine spectroscopy with laser light
- collision studies HCI atoms

- high-precision mass measurements
- HCI surface interactions
- hollow atom spectroscopy

ESR – From 400 to 4 MeV/u

- stochastic cooling at injection energy implemented
- electron current for final cooling at 4 MeV/u increased

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

ITRAP

The HITRAP cooler trap magnet

> SC magnet, B = 6 T
> Inner structure kept on 4 K

The HITRAP cooler trap

21+4 electrodes potential shaping => nested traps for 10⁵ ions, 10¹⁰ e⁻

e- cooling to 10 eV resistive cooling to 4 K

thermal contact with the cold magnet environment vacuum better than 10⁻¹³ mbar

Questions

- space charge and frequency shifts
- cooling times

HITRAP

survival probability

Resistive cooling of an ion cloud

HITRAP – LEBT & Cooler Trap

- catch the ions in flight
- cool them with combined electron and resistive cooling to ~ 4 Kelvin

Beam dynamics: DDB to the RFQ

Bunching of the ESR beam

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

HITRAP

HITRAP buncher cavities

Harmonic buncher

HITRAP

HITRAP decelerator cavities

Commissioning beamtime – August 2007

Linear accelerator I

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

HITRAP – IH-Type Structure

6 Keylin

Remember 2009

beam profile separation of 0.5 and 4 MeV/u beam on diamond

GSI

Commissioning of the IH-tank with Beam

Setup for beam measurement of beam properties

G S

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010

Beam dynamics design II: From

H-mode (type) structures

HITRAP

L. Dahl, Workshop HITRAP-ESR-2010, Eisenach 28.06.2010