Comparison of spill structures

S. Sorge, G. Franchetti, GSI 18/07/16

Using the data provided in the indico web site of "The Slow Extraction Workshop" the following table is constructed.

Institution	PPBrms/	Particles	PPBrms/	Particles per	Spill	Total	Original	Efficiency	Beam type,
Name	PPBave 1 ms hin	per 1 ms bin	PPBave Original	original bin	duration (sec)	particles Per	Bin (ms)		Remarks
	1 115 011		bin		(300)	Spill	(iiis)		
1	2	3	4	5	6	7	8	9	10
CERN, M. Fraser	0.157	1.0e10	0.158	4.0e9	4.0	4.0e13	0.4	98%	proton, unbunched
MIT, C. Krantz	0.166	34000	0.250	1700	8.0	2.72e8	0.05		ion (C12+), bunched KO
BNL, K. Brown	0.188	3.17e10	0.208	1.27e9	2.4	7.6e13	0.04	98 %	proton, empty 93 MHz bucket at 5 kV
HIT, C. Schoemers	0.210	30000	0.305	1500	5.0	1.4e8	0.05	C: 65%, P: 60%	ion (C12+), bunched KO
FJZ, H. Stockhorst	0.279	3700	0.279	3700	3.5	1.3e7	1.0	98%	proton, unbunched stochastic
IHEP, S. Ivanov	0.329	(1.5-7.5)e8	0.448	6.0e7 – 3.0e8	1.35	(2-10)e12	0.04	90 - 94%	proton, unbunched stochastic
GSI, P. Forck	0.334	900	0.575	18	1.55	1.4e6	0.02		ion, bunched KO
MedAustron, A.Wastl	0.541	3.6e6	0.901	72000	5.0	1.8e10	0.02	80 %	proton, unbunched with betatron core
BNL, K. Brown	0.565	3.88e10	0.870	1.55e9	1.6	6.2e13	0.04	98 %	proton, no empty bucket filtering, random noise, no power supply harmonics
J-PARC, M. Tomizawa	0.637	2.3e10	0.911	2.3e8	2.1	4.774e13	0.01	99.5 %	proton, unbunched
GSI, P. Forck	0.642	550	0.806	11	2.0	1.1e6	0.02		ion, bunched resonant
GSI, P. Forck	0.726	1000	1.40	20	2.1	2.1e6	0.02		ion, unbunched resonant
FZJ, H. Stockhorst	1.11	1400	1.11	1400	3.0	4.3e6	1.0	98%	proton, resonant extr.

Notes for column 2:

PPB= particles units per bin, i.e. are not necessarily physical particles.PPB_av= averaged particle units per bindPPB_rms= rms deviation of particle units per bin from PPB_av

1 ms:

(dPPB_rms) / (PPB_average) obtained from data clustered in bins of 1 ms. The binning time is normalized to 1 ms, because that was the longest found in one of the spill files: this is obtained by merging consecutive bins to reach blocks of 1 ms.

dt_bin_original: (dPPB_rms) / (PPB_average) obtained from the original data, for the bin length as provided by original files (i.e. bin length=dt_bin_original).

Remark on column 6:

Efficiencies are according to survey files received.

Definitions are not necessarily the same, some number are efficiency of pure extraction process, some others of a whole cycle including injection and acceleration.

Rescaling the spill data

All data are provided as particle per bin (**PPB**) with bins of a given length (column 8). In order to compare the statistical properties of the spill structure, data are clustered in bins of 1 ms, and the statistics is performed in this structure. This is an example of clustered bin from 4-neighbored bins.

