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The rest frame (P = 0) energies of positronium (e+e−) atoms are known from Introductory Quantum Mechanics,

P 0 = 2me + Eb (2.5)

with binding energies Eb = − 1
4meα

2/n2 � −6.8 eV/n2 (at lowest order in α, for the principal quantum number
n = 1, 2, . . .). Hence the elastic e+e− amplitude G(e+e− → e+e−) has an infinite set of positronium poles just below
threshold (Eth

CM = 2me), and slightly below the real s = E2
CM -axis due to the finite life-times. How are these poles

generated by the Feynman diagrams describing G?

We may regard the positions of the bound state poles in s = (2me + Eb)
2 as functions of Eb, i.e., of α. A Feynman

diagram of O (αn) cannot have a pole in α at any finite order n. The only way to generate a bound state pole in
G is for the perturbative expansion to diverge1! This sounds surprising at first, since we are used to trusting QED
perturbation theory. The poles exist for any α, however small. Thus some nominally higher order diagrams, such as
those in Fig. 2(b-d), must be effectively of the same order in α as the Born term (a).
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FIG. 2: Feynman diagrams contributing to elastic e+(p1)e
−(p2) scattering. The arrows indicate the fermion direction. The

momentum of the upper line is in the antifermion (e+) direction, thus p01 > 0.

The breakdown of the perturbative expansion is actually familiar from classical physics, where phenomena involving
many photons dominate. For example, the notion that opposite charges attract while like charges repel cannot be
explained by just the Born term in Fig. 2. This diagram changes sign if the positron is replaced by an electron, so its
absolute square is invariant. The product of diagrams (a) and (b), on the other hand, contributes with opposite signs
to σ(e±e− → e±e−). Thus our everyday experience of attraction and repulsion originates from quantum interference
effects.

Higher order diagrams have not only more vertices ∝ e but also more propagators, which are enhanced at low
momenta. Typical momentum exchanges in atoms are of the order of the Bohr momentum2, and electron energy
differences then follow from non-relativistic dynamics:

|q| ∼ αme q0 ∼ q2/2me ∼ 1
2α

2me (2.6)

The Born diagram of Fig. 2(a) scales with α as

G[2(a)] ∼ α/q2 ∼ α/q2 ∼ 1/α (2.7)

The box diagram 2(b) has four vertices, giving a factor e4 ∼ α2. The two photon propagators contribute 1/q2 ∼ α−2

each. The electron and positron propagators are off-shell on the order q0 ∼ k0, each propagator being of O
(
α−2

)
.

The relevant region of loop momentum is
∫
dk0 d3k ∼ α2 (α)3 ∼ α5. Altogether,

G[2(b)] ∼ α2 (α−2)2 (α−2)2 α5 ∼ 1/α ∼ G[2(a)] (2.8)

A similar analysis shows that “ladder” diagrams with any number of photon exchanges are of O
(
α−1

)
and thus of

the same order in α as the Born diagram (2.7). This allows the perturbative series to diverge for any α. Note that
the above counting requires the initial and final momenta p1, . . . p4 of the scattering to themselves satisfy the scaling
(2.6): As α → 0 the external momenta need to be correspondingly decreased. Conversely, the initial and final states
do not couple to the bound states in a “hard” scattering process where the momentum exchange |q| � αme. Then
〈P |i〉 ∼ 〈f |P 〉 � 0 in (2.4) and bound state contributions can be ignored. In the following we shall see more such

1 This divergence is distinct from that due to perturbative expansions being asymptotic series [1].
2 In calculations of higher order corrections to physical quantities other momentum scales must be considered as well.


