Magnet design and field calculations

Alexey Bragin, Sergey Pivovarov Budker Institute of Nuclear Physics, Novosibirsk, Russia

CDR meeting, May 2017

Total view of the magnet

Magnet design: iron yoke

The yoke is of Steel 1010,

the taper part of the yoke is a kind of ARMCO

The clamps here don't have inner round cuts.

In calculations they exists.

TDR dimensions

Dimensions now

Dimensions of the coils are the same

3D model in COMSOL calculations

Magnetic field distribution

The integral from the target along the central line is 0.886 T*m in the length of 1 m.

Magnetic field distribution

Magnetic field distribution at vertical shift on 450 mm, horizontal position is 0 mm.

Magnetic field distribution

Magnetic field distribution at horizontal shift on 900 mm, vertical position is 0 mm from the center

2D calculations

Forces, inductances

- Vertical forces on the coils are:
 - 2.6 MN (2.8 if only one coil charged as in TDR)
 - 3.3 (3.5 if only one coil charged as in TDR)
- Force on the pole iron is about 3 MN
- Mutual inductance between the coils is 0.21 H very low. Calculated from stored energies of separately charged coils.

Results

- In the current design the magnetic field slightly decreased with respect to the TDR design
- Magnetic field on the winding is unchanged, the maximal value is 3.25 T
- ◆ Forces at test current are high. The test current is 20% higher than nominal current. Is there any sense to have such high test current? As a proposal 5% only instead 20%.