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Quote

“ A person who never made a mistake never tried anything new.”

Albert Einstein

4



Declaration

I hereby declare that the project entitled "mSTS data analysis for run
number 159" is my own work.

5



Abstract

The Compressed Baryonic Matter experiment (CBM) is a next-generation
heavy- ion experiment to be operated at the FAIR facility, currently under
construction in Darmstadt, Germany. The data analysis is one of the major
part of research. This report presents my three months experience at FAIR/GSI.
The purpose of my Internship was to understand the raw data from mSTS
for run number 159 and to make the bridge between theoretical and practical
knowledge. This study attempted to understand how an analysis team works
in the CBM.
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Chapter 1

Introduction

1.1 Fair Project
FAIR will be one of the largest and most complex accelerator facilities in the
world. FAIR is being built in Darmstadt, Germany. At FAIR, matter that
usually only exists in the depth of space will be produced in a lab for research.
Scientists from all over the world will be able to gain new insights into the
structure of matter and the evolution of the universe from the Big Bang
to the present. FAIR is under construction at GSI Helmholtzzentrum für
Schwerionenforschung. Its existing accelerator facilities will become part of
FAIR and will serve as first acceleration stage. For the realization of FAIR,
accelerator experts, scientists and engineers of FAIR and GSI are working
closely together in teams all over the world [1].
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1.2 CBM experiment
The Compressed Baryonic Matter (CBM) experiment at FAIR is one of the
major experimental projects at the upcoming FAIR facility. This experiment
is focused on the exploration of the QCD (quantum chromodynamics) phase
diagram in the region of of high baryon densities. The experimental challenge
is to measure and to identify most of the particles which are produced in a
high-energetic collision between two atomic nuclei. The CBM program can
only be realized with a combination of fast detector systems and readout
electronics. The detector is designed as a multi-purpose device which will be
able to measure hadrons, electrons and muons in heavy-ion collisions. The
optimization of the detector design is carried out through extensive feasibility
studies which are performed within a newly developed software framework
[2]. The experimental setup is optimized to reinvestigate with new probes a
very promising territory of the QCD phase diagram, as shown in the following
figure.

Figure 1.1: Sketch of the QCD Phase Diagram
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Figure 1.2: The Compressed Baryonic Matter experiment

The heart of the experiment will be a silicon tracking and vertex detection
system installed in a large acceptance dipole magnet. The Silicon Tracking
System (STS) is the key detector for measuring the momentum and tracks of
up to 1000 charged particles produced in Au+Au collisions which happen at
interaction rates up to 10 MHz on a fixed target. The Micro-Vertex Detector
(MVD) is needed to determine secondary vertices with high precision for
D meson identification. The measurement of electrons will be performed
with a Ring Imaging Cherenkov (RICH) detector together with Transition
Radiation Detectors (TRD) for electrons with momenta above 1.5 GeV/c.
Muons will be measured with an active hadron absorber system consisting
of iron layers and muon tracking chmbers (MuCh). For muon measurements
the MuCh will be moved to the position of the RICH. Charged hadron
identification will be performed by a time-of-flight (TOF) measurement with
a wall of RPCs located at a distance of 10 m behind the target. The setup
is complemented by an Electromagnetic Calorimeter (ECAL) in selected
regions of phase space providing information on photons and neutral particles,
and by a Projectile Spectator Detector (PSD) needed for the determination
of the collision centrality and the orientation of the reaction plane [2].
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1.3 mCBM
A CBM full system test-setup called mCBM@SIS18 (”mini-CBM”, shortened
to mCBM) is presently installed at the SIS18 facility of GSI/FAIR. The
mCBM experiment allows to test and optimize the performance of the detector
subsystems including the software chain under realistic experiment conditions
which will significantly reduce the commissioning time for CBM at SIS100.

mCBM has been recognized as a FAIR Phase-0 experiment.

Figure 1.3: mCBM setup in March 2019
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1.3.1 mSTS

The task of the mSTS is to provide track reconstruction and momentum
determination of charged particles. In its currently studied versions the
mSTS consists of two tracking layers of silicon detectors. The concept of
the mSTS tracking is based on silicon micro-strip detectors on lightweight
ladder-like mechanical supports. The sensors read out through multi-line
micro-cabels with fast electronics at the periphery of the stations where
cooling lines and other infrastructure can be placed [3].

.

Figure 1.4: mSTS operational status 3/2019

In Figure 1.4 the Setup of mSTS is presented. The components are
"half-ladders", detector ladders populated with two modules. Every module
comprises a double-sided silicon microstrip sensor, segmented into 1024 strips
per side.
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Chapter 2

Data analysis

2.1 Analysis of mSTS raw data, without regarding
data from other detectors

2.1.1 Charge distribution

During my first week of work, I went through some basic training regarding
the mCBM experiment and more importantly the data analysis structure that
had been crucial in my project. During this week I also studied meaning of
the digi, cluster and hit. A digi is a representation of the smallest information
unit delivered by the CBM-STS by a single readout channel, whereas cluster
is a collection of digis in neighbouring module channels. A hit in the STS is
a position measurement constructed from two clusters on the front and back
side of the sensors, respectively, which have a geometric intersection.
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The first part of my project was to analyse mSTS raw data for run
number 159. For this purpose I used unpacked data provided by Dr. Alberica
Toia and the reconstruction macro for mCBM data to find clusters and hits.
Analysing data started with the question if it is possible to easily seperate
good signal from noise. To answer this question I looked into the charge
distribution of all digis (Figure 2.1).
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Figure 2.1: Charge distribution of all digis (lin/log)

As visible from Fig.2.1, an obvious seperation of signal and noise is not
possible from the charge distribution.
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The STS ASICs were operated with rather high threshold since the noise
was higher than expected. This holds in particular for the ASICS of type
STS-XYTER 2.0 (ladder 1), which in addition seem to have other buggy
features. So I looked only in a first stage, at the STS-XYTER 2.1 modules
(ladder 0), and made the charge distribution of digis in ladder 0. As we can
see I got the same result like for all digis (Figure 2.2).
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Figure 2.2: Charge distribution of digis in ladder 0 (lin/log)
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2.1.2 Cluster analysis

The goal of the cluster reconstruction is to group digis originating from
the same incident particle into one object called cluster. This procedure
is implemented in two steps: the digis grouping and the determination of the
cluster centre [3]. To check the result of cluster finding process I have made
a cluster size distribution in ladder 0. As can be seen in Figure 2.3, clusters
are found properly also some with large number of digis in a cluster, even up
to 100 digis.
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Figure 2.3: Cluster size distribution in ladder 0
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Next part of the cluster analysis was the distribution of time differences of
digis belonging to one cluster. I made this distribution twice for two different
values of the time cut for digis in a cluster (Figure 2.4). First figure presents
the distribution of time differences with default value which is calculated
from the time errors of the digis. We see here the clear peak with expected
resolution. The second figure shows the clear primary peak with expected
resolution, but at 65 ns there are secondary peaks. The origin of these
secondary peaks is not yet known. They seem to be caused by periodic noise
in the readout ASICs with frequency of about 16 MHz.
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Figure 2.4: Time differences of digis in a cluster
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2.1.3 Hits analysis

The last part of the mSTS data analysis was the hits analysis. A hit is a
combination of two clusters, centres of which correspond to the strips on
different sides of the sensor that geometrically cross each other. Hits are
characterised by geometrical coordinates. The hit position is defined as the
crossing point of the clusters on the p- and the n-sides of the sensor [4]. The
Figure 2.5 shows the distribution of hits in mSTS. the triangular-shaped
regions show the active area, represented by strips conected to working
ASICs. Active area has been projected onto T0 and mMuCh. Unfortunately
as we can see the mTOF is off the beam path (Figure 2.6).
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Figure 2.5: x-y-z coordinates of the found hits
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Figure 2.6: Extrapolated tracks for mCBM
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2.2 Event-by-event analysis

In CBM we define an event as a collection of links to data objects, whereas
the process of event-association is called event building. The simplest event
building technique works at the level of individual activations of readout
electronics channels (digis). This technique is fast, allows usage of standard
event-based reconstruction algorithms for free-streaming data. Event building
can be divided in two steps. The first one is an event finding to determine
a moment of time when heavy-ion collision had happened. The second one
is an event composition, when data, corresponding to the found event, is
collected from several subdetectors of CBM setup. The idea was that the
data after reconstruction in event-by-event mode should have less random
noise. To test this hypothesis I used CbmMcbm2018EventBuilder() on the
reconstruction level. I also set time cut digis for 1000 ns. The result of this
analysis is presented in Figures 2.7,2.8 and 2.9.
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Figure 2.7: Charge distribution of digis in ladder 0
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Figure 2.8: Cluster size distribution
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Figure 2.9: Distribution of time differences of digis belonging to a cluster
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Inspecting the received plots, there is no obvious difference between data
in event-by-event mode and raw data from mSTS detector shown in section
"Analysis of mSTS raw data, without regarding data from other detectors".
In conclusion, the majority of all data are noise or the majority of all data
are signal. The noise between events is negligible.
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2.3 mCBM simulation

Simulation is now recognised as the third main methodology of research.
High-performance computers are enabling mathematical models of reality,
based on our hypotheses, to be translated back into numerical results. These
results can in turn be compared with raw data. The importance of simulation
is that it allows parameters to be changed in the detectors to understand
cause and effect at a level which is not possible in other ways. It also permits
phenomena to be studied which might be too expensive or dangerous for
conventional experimental methods. Another reason for comparison is to
validate the theoretical and mathematical model and to indicate how it might
be enhanced if results do not match [5].

Figure 2.10: mCBM simulation steps

In Figure 2.10 steps of mCBM simulation are presented. In first step
we run the mcbm_transport.C macro, the macro for standard transport
simulation in mCBM using UrQMD input and GEANT3. The second step of
simulation is the launch of run_digi.C. The detector response produces a raw
data file from the transport data, which serves as input for reconstruction.
Raw data will be delivered in time-slice format. On this level we can change
global module parameters. In last step we reconstruct simulated data.
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SIMULATION
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Figure 2.11: Charge distribution of digis in ladder 0 (comparison of simulated
data and raw data)
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SIMULATION
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Figure 2.12: Cluster size distribution (comparison of simulated data and raw
data)
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SIMULATION
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Figure 2.13: Distribution of time differences of digis belonging to one cluster
(comparison of simulated data and raw data)
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In order to compare raw data from mSTS for run number 159 with
simulated data I set together results of these analysis. I compared charge
distribution, cluster-size and time resolution. As can be seen in Figure 2.11,
2.12 and 2.13 there is a big difference between raw and simulated data.
This fact is not surprising and we expected this kind of results because the
simulation may not always produce accurate results. The mCBM team is
currently working on improving simulation. The reason to have a detector
description in software is to be able to understand the detector behaviour and
to correct detector data for imperfect behaviour of the detector (efficiency).
Thus, the detector model implemented in the simulation must correspond as
well as possible to the reality. Therefore, it is necessary to adjust it on the
basis of real experiment data.
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Chapter 3

Summary

I investigated mSTS data from run 159, taken in March and April 2019. My
findings are:
- there is no obvious separation of signal and noise from the charge distribution
of digis,
- cluster and hit reconstruction work satisfactorily,
- the time resolution derived from the time difference of digis in a cluster is
better than expected,
- in the time spectrum there is a periodic noise with a frequency of about 16
MHz, the origin of this noise is not yet understood,
- results form event-by-event analysis show similar results as the analysis of
the full data stream, indicating that the majority of data is attributed to
beam interactions, and that the inter-event noise is negligible,
- charge, cluster-size and time distributions are different in simulation when
compared to real data. There is a need to adjust the detector module
implemented in the simulations.
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