

WP 28 / T2 SiPM coupled advanced fibre detectors

Christoph Wendel

HISKP Universität Bonn

cwendel@hiskp.uni-bonn.de

Places for SiPM Application at UBO

2009

- Calorimeter Trigger

universität**bonn**

- TPC Start Detector T2: SiPM coupled advanced fibre detectors

Places for SiPM Application at UBO

2010

- Calorimeter Trigger (APD readout)
- TPC Start Detector
- (now organic instead of inorganic fibres)
- for WP28 / WP21 :
- e^{-} / γ Beam Monitor using inorganic fibres and SiPMs

Trigger for the CB Calorimeter

1320 crystals - photodiode readout via WLS

SiPMs added to the existing readout

- lower temperature dependance
- low voltage
- min. thr.:
 - trigger 16 MeV

no trigger capability

new designed readout based on APDs

- strong temperature dependance
- "high" voltage
- min. thr.:

timing <1 MeV trigger 6 MeV

Trigger for the CB Calorimeter

1320 crystals - photodiode readout via WLS

SiPMs added to the existing readout

- lower temperature dependance
- low voltage
- min. thr.:
 - trigger 16 MeV

no trigger capability

- strong temperature dependance
- "high" voltage
- min. thr.:

timing <1 MeV trigger 6 MeV

TPC Start Detector

inorganic scintillating fibres (abandoned spring 2009)

- bright, but... high $Z \rightarrow$
 - high photon conversion propability
 - large proton scattering angle

two layers of ~300 square (2 mm) plastic scintillator fibres

- small scattering angle
- ~ 20 photoelectrons at 30 cm
- fibre tests (almost) finished

Beam Monitor

WP 28 / 21 : inorganic fibres with SiPM readout

"Proof of Concept" detector

two times two crossed layers

first layer pair : square organic fibres (electron beam dimensions and electron veto)

second layer pair : round inorganic fibres (photon beam dimensions)

Testsetup

Expected Response

2 mm square organic (i.e. BCF 12 MC)		0,5 mm round inorganic YAG : Ce
1,8 - 2,6 MeV * cm / g	Material	1,4 - 2,4 MeV * cm / g (*)
1,9 - 2,7 MeV / cm	1,05 g/cm ³ Density 4,57 g/cm ³	6,4 - 11,0 MeV / cm
0,38 - 0,55 MeV	2 mm Thickness ~ 0,35 mm	0,22 - 0,38 MeV
3024 - 4368 Ph	8k Ph/MeV Lightyield 12k-25k Ph/MeV	2911 - 9597 Ph (**)
221 - 319 Ph	>7,3% Trapping Eff. ~ 5%	146 - 480 Ph
55 - 80 Ph	25% PDE @ λ 18%	26 - 86 Ph
	Coupling	

universität**bonn**

Measured Response

Pulse Form

short Overview WP 21 Meeting Nov 2009

- many different scintillators possible as fibres (LYSO, YAG, BGO,...)
- crossection defined by nozzle (round, square, hexagonal,... 0.3 mm - 1 mm)
- Iength of up to 1 m possible (currently), 2 m per day

excerpt of the test schedule:

- production of different shapes, diameters and materials
- measurement of

universität**bonn**

- homogeneity of doping
- attenuation length, lightyield
- risetimes, decaytimes
- trapping efficiencies, cladding
- coupling to lightguides and detectors
- construction of prototype detectors with SiPM / PMT readout

Outlook

- acquisition and test of different fibre materials
- test of different SiPMs
- purchase of ~ 60 cm² fibres, SiPMs and construction of the detector
- measurements on ELSA's e^{-} and γ Beam
- use of the detector for PANDA EMC prototype tests at ELSA