Studies of Multianode Photo Sensors

Albert Lehmann, Universität Erlangen-Nürnberg

• motivation

• experiences with MCP-PMTs

• first steps and future goals with SiPMs

Albert Lehmann

PANDA Detector

anti<u>P</u>roton-<u>AN</u>nihilation at <u>DA</u>rmstadt

 $\sqrt{2}$

m

- Strong magnetic field (2T)
- High resolution tracking
- Good π/K separation \Rightarrow **DIRC**

Albert Lehmann

G-APD Workshop --- Prag --- Feb. 22-23, 2010

ī and a

Technical Challenges to Photon Sensors

- Single photon detection inside high B-field
 - high gain (> $5*10^5$) even in the 2 Tesla magnetic field
- Time resolution to separate π/K with TOP
 - very good time resolution of < 50 ps for single photons</p>
- Photon rates in the MHz regime
 - high rate stability (rates of several MHz/cm²)
 - short pulses (< 10 ns) to avoid pile-up
 - long lifetime
- Few photons per track
 - high detection efficiency η = QE * CE * GE
 [QE = quantum efficiency; CE = collection efficiency; GE = geometrical efficiency]
 - low dark count rate

Albert Lehmann

Sensor Candidates

good geometrical resolution over a large surface needed → multi-pixel sensors

- multi-anode photomultipliers (MaPMTs)
 - (more or less) ruled out by magnetic field
- hybrid photo detectors (HPDs)

too bulky

- micro-channel plate photomultipliers (MCP-PMTs)
 - problems with lifetime and rate stability
- Geiger-mode avalanche photo diodes (SiPMs)
 - problems with noise

Albert Lehmann

Investigated MCP-PMTs

pore size (µm) number of pixels active area (mm²) total area (mm²) active area efficiency peak Q.E. protection layer

	Burle 85011	Burle Prototyp	BINP	Hamamatsu SL10
	25	10	6	10
	8x8	8x8	1	4x1
	51x51	51x51	9² π	22x22
	71x71	69.5x69.5	15.5² π	27.5x27.5
су	0.52	0.54	0.36	0.61
	@ 400 nm	@ 400 nm	22% @ 480 nm	20% @ 300 nm
	none	none	5-10 nm Al ₂ O ₃	none
				Tom

- **Burle 85013:** as 85011 but with a better active area efficiency (81% of a total area of 59x59 mm²)
- **Burle 85012:** as 85013 but with improved vacuum \rightarrow better lifetime

Albert Lehmann

Tools for Sensor Studies

- Light source
 - PiLas light pulser (pulse width 14 ps (σ); $\lambda = 372$ nm)
 - light transport through glass fibers, micro lenses and gray filters
- Fast oscilloscope
 - LeCroy WavePro7300 (3 GHz; 20 Gs/s)
 - very useful for precise time resolution measurements
- CAMAC and VME DAQ
- Dipole magnet
 - homogeneous field up to 2.05 T (6 cm pole shoe gap)
- XY-Scanner
- Setup for Quantum Efficiency measurements
 - halogen lamp ($\lambda = 300-800$ nm) and monochromator ($\Delta \lambda = 1$ nm)
 - Si photo diode as reference sensor (Hamamatsu S6337-01)

Albert Lehmann

MCP-PMT Gain in Magnetic Field

pore size ≤10 µm needed for single photon detection in 2 T field

Albert Lehmann

Gain Dependence on B-Field Direction

Albert Lehmann

MCP-PMT Time Resolution

Amplifier Ortec VT120A (x200; 350 Mhz) --- Discriminator LeCroy 821

 best single photon resolution corrected for electronics and laser width obtained with BINP #73 (6 μm): 20 ps

Albert Lehmann

Surface Scans of Burle MCPs (Gain)

- **Burle 25 µm:** almost x2 gain variations (1.5 to 2.8*10⁶) in channels
- **Burle 10 µm:** very strong gain fluctuations (0.5 to 3.5*10⁶ !!)

Albert Lehmann

Surface Scans of Burle MCPs (Crosstalk)

Burle Prototype (10 µm)

<u>Burle 25 µm</u>: rather homogeneous response, but significant crosstalk

Burle 10 µm: less homogeneous response and even more crosstalk •

Albert Lehmann

Surface Scans of SL10 (Gain, Crosstalk)

- *Gain:* not very uniform even across the individual pixels
- <u>Crosstalk</u>: rather moderate with specially designed voltage divider

Albert Lehmann

Rate Stability

- usually stable operation to about 1 MHz/cm² photons
- Hamamatsu SL10 stable up to 5 MHz/cm² (at gain 10⁶)

Albert Lehmann

MCP-PMT Lifetime

- fast gain drop first and almost constant later
- Q.E. of HPK w Al-protection almost stable up to 3.5 C/cm²

Albert Lehmann

Overview of Sensor Performances

	DIRC required	MaPMT	MCP-PMT	SiPM
Gain at 0 T [* 10 ⁶]	> 0.5	1 to 10	1 to 10	0.5 to 1
Gain at 2 T [* 10 ⁶]	> 0.5	0	> 0.5	> 0.5
Time resolution [ps]	< 50	150	< 50	100
Rate stability [MHz/cm ²]	5 – 10	10	5	
Darkcount rate [kHz/cm ²]	< 10	~ 0.01	< 1	10000
Crosstalk behaviour	low	okay	moderate	
Lifetime [C/cm ²]	50 – 100		> 3.5	

 currently there is no sensor fulfilling all requirements of the PANDA DIRCs

Albert Lehmann

SiPMs for PANDA DIRC?

- Advantages compared to MCP-PMTs
 - higher rate stability
 - higher quantum efficiency
 - significantly longer lifetime
- Disadvantages compared to MCP-PMTs
 - still rather low geometrical efficiency
 - worse time resolution
 - behaviour in radiation environment?
 - enormous dark count rates at room temperature
 - very expensive (coverage of large area)

SiPMs available in Erlangen

• SensL SPM

- SPMMini (only test module)
 - 1x1 mm² with Peltier-Cooling
- SPMArray
 - active area 12x12 mm² with 4x4 channels (3x3 mm² SiPMs with 35 µm microcells)
- Hamamatsu MPPC
 - S10362-11-025U; S10362-11-050U; S10362-11-100U
 - $1x1 \text{ mm}^2$ MPPCs with 25, 50 and 100 μ m microcells
 - S10985-025C; S10985-050C
 - active area 6x6 mm² with 2x2 channels
 (3x3 mm² MPPCs with 25 and 50 μm microcells)

Albert Lehmann

SensL SPMMini (Dark Count)

- Size of SPMMini: 1x1 mm²
- 920 pixels
- Test module with readout electronics and Peltier cooling
- Dark count cooled >100 kHz

Hamamatsu MPPC (Time Resolution)

- Hamamatsu MPPC (S10362-11-050U)
 - 50 μm pixels
 - area: $1x1 \text{ mm}^2$
- self-designed readout circuit
- amplification factor x6300
- measured with oscilloscope
- single photon time resolution ~100 ps

Albert Lehmann

First Measurements with Cooled MPPC

Hamamatsu MPPC S10362-11-050U

Cooled with $5x5 \text{ cm}^2$ Peltier element at air \rightarrow probably not very efficient

Albert Lehmann

SensL SPMArray

- active area $12x12 \text{ mm}^2$ with 4x4 channels $(3x3 \text{ mm}^2 \text{ SiPMs with } 35 \mu \text{m microcells})$
- bias supply and amplification board (x2200 for each channel)

- positive signals
 - rise time ~ 10 ns
 - width ~100 ns
- enormous dark count rate
 - ~10 MHz/channel at room temperature
 - a lot of pile-up

Construction of a Cooling Box

- Size: $\sim 60 \times 60 \times 60 \text{ cm}^3$
 - large enough for XY-scans of multi-pixel SiPMs
 - vacuum insulated panels
 - cooling medium: dry gas

• Thermostat ministat 230-cc

- temperature: -40 ... 200 °C
- temp. constancy: 0.02 K
- sucking and forcing pump
- cooling power:
 - 0.38 kW @ 0 °C
 - 0.05 kW @ -40 °C
- external temperature control

Plans with SiPMs

- performance measurements for different SiPM models (especially large area devices)
 - most of the equipment exists
 - single photon time resolution
 - behaviour at high event rates
 - lifetime

reduction of dark count rates

- sensor cooling inside large box (also usable for XY-scans)
- setup is currently being built

Albert Lehmann