Timing and low temperature behavior of SiPM

G.Bisogni¹, <u>G.Collazuol¹</u>, A.Del Guerra^{1,2}, C.Piemonte³

¹ INFN sezione di Pisa, ²Dipartimento di fisica Universita` di Pisa, ³FKB-IRST Trento

Overview

- Introduction
- Experimental methods (low T)
- Measurements and discussion (low T)
- Summary about Timing measurements
- Conclusions

Introduction

Main contributions to SiPM characterization:

(A) intrinsic timing – measurements since 2007 (VCI 2007 conference) Characterization of intrinsic timing resolution of different kind of SiPM devices with ultra-fast laser pulses and waveform analysis with optimum timing filtering

(B) cryogenic behavior - very recent studies (VCI 2010 conference) Characterization of FBK SIPM in the range 50K<T<320K
1) junction forward and reverse (breakdown) characteristics
2) gain, dark current, after-pulses, cross-talk
3) photon detection efficiency (PDE)

Improved SiPM performances at low temperature (w/ respect to T_{room})

1) lower dark noise by orders of magnitude

- 2) lower after-pulsing probability (down to \sim 100K)
- 3) higher PDE (down to ~100K, depending on λ)
- 4) better timing resolution
- 5) better $V_{\text{breakdown}}$ stability (w.r.t. to variations of T)

 \rightarrow SiPM is an excellent alternative to PMT at low T even more than at room temperature !!!

Vacuum vessel (P~10⁻³ mbar)

Experimental Setup

Experimental setup

Temperature control/measurement

- Cryo-cooler + heating with low R resistor
- thermal contact (critical) with cryo-cooler head: SIPM within a copper rod
- T measurement with 3 pt100 probes
- Measurements on SiPM carried after thermalization (all probes at the same T)
- check junction T with forward characteristic

Voltage/Current bias/measurement

• Keytley 2148 for Voltage/Current bias/readout

Pulse measurement

- Care against HF noise
 → feed-throughts !!!
- Amplifier Photonique/CPTA (gain~30, BW~300MHz)

SiPM samples

 FBK SiPM runII – 1mm² (Vbr~33V, fill factor~20%)

Gain and pulse shape

If R_q is high enough the internal current decreases at a level such that statistical fluctuations may quench the avalanche

Gain and pulse shape

The SiPM equivalent circuit has two time constants:

- $\tau_{F} = R_{Load} C_{TOT}$ (fast)
- $\tau_Q = R_Q (C_D + C_Q)$ (slow)
- F. Corsi, et al. NIMA 572(2007)

Waveform:

The two current components show different behavior with Temperature

(fast component is independent of T because stray C_{Q} couple with external R_{LOAD} independently of R_{Q})

I-V measurements: forward bias

1 Forward current $J_F \sim \exp(V_d \frac{q}{\eta k T})$

Diffusion dominating: $\eta \rightarrow 1$ Recombination dominating: $\eta \rightarrow 2$

I-V measurements: forward bias

Voltage drop at fixed forward current → precise **measurement of junction T**

- linear dependence with slope $dV_{drop}/dT|_{1uA} \sim 3mV/K$
- precise calibration/probe for junction Temperature

Series Resistance vs T

- 1) Fit at high V of forward characteristic \rightarrow measurement of series resistance R_s
- 2) Exponential recovery time (afterpulses envelope) \rightarrow measurement of R_s

I-V measurements: reverse bias

Avalanche breakdown voltage decreases due to increased carriers mobility at low T

V breakdown vs T

11

Dark current vs T at constant gain (i.e. fixed ΔV)

Main noise mechanisms:

Tunnel noise dominating for T<200K (FBK devices)

Dark counts rate vs T at constant gain (i.e. fixed ΔV)

After-pulsing

After-pulses vs T (constant gain, ie ΔV)

T<100K: new traping centers active (to be studied in more detail)

△V scan (fixed T) – DR, AP, Gain, X-TALK

Gain and Cross-Talk independent of Temperature

PDE vs ΔV and λ (room T)

PDE at various λ - ΔV scan (at constant T)

PDE vs ΔV measured as Current/Gain \rightarrow PDE (a.u.) $\equiv I_{SIPM} / I_{Calib} / \Delta V$ Normalization to calibrated photo-diode current (not absolute # of photons)

193K and 123K measurements not affected by after-pulses → saturation visible
 55K affetcted by after-pulses (not corrected; cross-talk is not subtracted too)

(Dark rate subtracted - small effect)

PDE with LED (380nm) - ΔV scan (const. T)

PDE with LED (380nm) - T scan ($\Delta V=2V$)

Studies ongoing for better understanding this shape

PDE at various λ – T scan ($\Delta V = 2V$)

PDE dependence on T at fixed gain. Normalization with calibrated photo-diode current and with PDE at T=300K (double ratio)

shape similar at different λ → related to properties of multiplication /recombination
 lower efficiency at low T for longer λ → due to absorption length ~ 1/T
 (with constant depletion width)

SiPM Timing – overview

GM-APD timing: fast and slow components

GM-APD timing: fast and slow components

2) Slow component: minor non gaussian tails with time scale O(ns)

Carriers photogenerated in the neutral regions beneath the junction and reaching the electric field region by diffusion

G.Ripamonti, S.Cova Sol.State Electronics (1985)

tail lifetime: $\tau \sim L^2 / \pi^2 D$

- L = effective neutral layer thickness
- D = diffusion coefficient

S.Cova et al. NIST Workshop on SPD (2003)

Shorter wavelengths \rightarrow higher resolution (reduced tails)

Waveform analysis: method

(1) Selection of candidate peaks:

- single photon peaks
- proper signal shape
- low instantaneous intensity (no activity before/after within 50ns)
- low noise during the previous 10 ns (typical noise ~ 1mV rms)

(2) Peak reconstruction

- optimum time reconstruction
- amplitude and width (baseline shift correction)
- (3) Time difference ∆t between consecutive peaks

NOTE: working fine at 20MHz counting rate

Waveform analysis: optimum timing filter

Different methods to reconstruct the time of a peak:

x parabolic fit to find the peak maximum
x average of time samples weighted by the waveform derivative
✓ digital filter: weighting by the derivative of a reference signal
→ best against noise (signal shape known)

Single Photon Timing Resolution (SPTR)

Analysis of the distributions of the t difference between successive peaks (modulo the laser period T_{laser} =12.367ns)

Gaussian + rms~50-100 ps

Tails (long λ) ~ exp (-t / O(ns)) contrib. several % for long wavelengths

Data at λ =400nm fit gives reasonable χ^2 with gaussian (σ_t^{fit}) + constant term (dark noise contribution)

The detector resolution is obtained by $\sigma_{\!\scriptscriptstyle t}^{\rm \ fit}/\!\sqrt{2}$

Data at $\lambda = 800$ nm fit gives reasonable χ^2 with an additional exponential term $exp(-\Delta t/\tau)$

- $\tau \sim 0.2 \div 0.8$ ns in rough agreement with diffusion tail lifetime: $\tau \sim L^2 / \pi^2 D$ if L is taken to be the diffusion length
- Contribution from the tails $\sim 10 \div 30\%$ of the resolution function area

IRST – single photon timing res. (SPTR)

Better resolution for short wavelengths: carriers generated next to the high E field region

G.Collazuol et al NIMA 581 (2007) 461

IRST devices (different types)

Results in fair agreement for devices with the same structure

Hamamatsu – single photon timing res.

CPTA/Photonique – single photon timing res.

G.Collazuol et al (unpublished)

Timing studies

Dependence of SiPM timing on the number of simultaneous photons

Poisson statistics:

 $\sigma_{t} \propto 1/\sqrt{N_{pe}}$

SPTR: position dependence

Yamamoto et al (Hamamatsu)

		FWHM (ps)	FWTM (ps)
	1	199	393
	2	197	389
	3	209	409
	4	201	393
	5	195	383

K.Yamamoto PD07

Lower jitter if photoproduction at the center of the cell

NOTE: when laser is impinging only on one cell it is not easy to be sure that only one photons is in the cell: while the amplitude is invariant (many photons = one photon), timing is much affected by the number of photons (A.Ronzhin)

165.3ps 148.2ps 149.9ps 149.3ps 149.7ps 189.2ps 189.2ps 176.7ps K.Yamamoto IEEE-NSS 2007

Data include the system jitter (common offset, not subtracted)

Conclusions

SiPM behave very well at low T, even better than at room T

In the range 100K<T<200K SiPM perform optimally;

 \rightarrow excellent alternatives to PMTs in cryogenic applications (eg Noble liquids)

- Breakdown V decreases non linearly with T
 - \rightarrow stability of devices wrt T is even better at low T
- Dark rate reduced by orders of magnitude
 - \rightarrow different (tunneling) mechanism(s) below ~200K
- After-pulsing increases swiftly below 100K
- Cross-talk and Gain (detector capacity) are independent of T (at fixed Over-V.)
- PDE higher than at T room at low T for short λ

I just carried on **additional measurements at low T** with short laser pulses for:

- accurately measuring of after-pulsing characteristic time constant(s) vs T
- cross-checking PDE (pulsed vs current method)
- measuring timing resolution vs Temperature (expected to improve at low T)
- checking Gain resolution at low T

Simulations and modeling going on to understand better After-Pulsing and PDE features at low T

We measured also the **excellent SiPM intrinsic timing resolution (<100ps for 1p.e.)** Recent additional measurements to be analyzed (time to avalanche, different devices, ...) Simulations and modeling work going on to understand timing data in more detail

Additional material

Setup: vacuum vessel + cryo-cooler

SiPM's are in thermal contact with a cooled Cu rod

Close up of a cell

Electrical model of a SiPM

R_q: quenching resistor (hundreds of kΩ) C_d: junction capacitance (few tens of fF) C_q: parasitic capacitance in parallel to R_q (few tens of fF, C_q < C_d) I_{AV}: SiPM ~ ideal current source current source modeling the total charge delivered by a cell during the avalanche Q= $\Delta V(C_d+C_q)$ C_g: parasitic capacitance due to the routing of Vbias to the cells (metal grid, few tens of pF)

1. Only $-V_{\rm b}$ >[⊻] ${\sf R}_{\sf bias}$ $R_{load} = 75\Omega$ SiPM 0. 5mV $R_{load} = 50\Omega$ Ampli. $R_{load} = 20\Omega$ R, GND 60ns 80ns 100ns 40ns• • • V(R.n. 2) • • • V(C1: 2, Vbi as) Ti ne

1) the peak of $V_{\mbox{\tiny IN}}$ is independent of $R_{\mbox{\tiny s}}$

A constant fraction Q_{IN} of the charge Q delivered during the avalanche is instantly collected on $C_{tot}=C_{q}+C_{eq}$.

2) The circuit has two time constants:

- $\tau_{IN} = R_L C_{tot}$ (fast)
- $\tau_r = R_q (C_d + C_q)$ (slow)

Decreasing R_s , the time constant τ_{IN} decreases, the current on R_s increases and the collection of Q is faster F. Corsi, C. Mazzocca et al.

Silicon properties at low T: higher mobility

FIGURE 1.16. Calculated electron mobility due to phonon and ionized impurity scattering mechanisms. The five plots correspond to T = 300, 77, 50, 30, and 4.2 K.

FIGURE 1.17. Calculated electron mobility, due to phonon, ionized impurities, and velocity saturation effects, as a function of the electric field for five temperatures; $N_{ii} = 10^{17} \text{ cm}^{-3}$.

Silicon propt's at low T: carriers freeze-out

For T<100 K, the ionized impurities act as shallow traps (provided the impurity doping concentration below of 10¹⁸ atoms/cm²) and carriers begin to occupy these shallow levels.

For T<30 K, practically no carriers remain in the bands

Plots from Guiterrez, Dean, Claeys -"Low Temperature Electronics: Physics, Devices, Circuits and Applications", Academic Press 2001

Silicon propt's at low T: impact ionization

For T<77K no data are available \rightarrow modeling is quite difficult...

FIGURE 1.43. The impact ionization rate α as a function of temperature T_A with the electric field *E* as a parameter calculated from Okuto and Crowell's (*85*) model.

Silicon propt's at low T: absorption length

FIGURE 1.53. Experimental (symbols) and fitted (lines) absorption coefficient α of silicon at *T* = 415, 300, 77, and 20 K [replotted from Rajkanan *et al.* (109)].

FIGURE 1.54. Measured absorption coefficient α (**I**) (101) and fitted α (solid line) versus temperature *T*. On the right axis the fitted penetration depth $(1/\alpha)$ is also shown.

Avalanche breakdown vs T

Fig. 4. Breakdown voltage vs temperature for Si and Ge p-n junctions. $V_B(300^{\circ}\text{K})$ is 2000, 330, and 60 V for Si and 950, 150, and 25 V for Ge for dopings of 10^{14} , 10^{15} , and 10^{16} cm⁻³ respectively. The linear-graded junctions have $V_B(300^{\circ}\text{K})$ the same as those for doping of 10^{15} cm⁻³.

Avalanche breakdown V is expected to show a **non linear dependence on T** (depending of the junction type and doping concentration)

Breakdown V decreasing with T due to increasing mobility

NOTE: in freeze-out regime Zener (tunnel) breakdown could be relevant. → negative Temperature coefficient (increasing with decreasing T)

Crowell and Sze

More recent model by Crowell and Okuto after Shockley, Wolff, Baraff, Sze and Ridley.

p-n junction characteristics: forward bias

Fig. 8.16. The current-voltage characteristic of a pn junction

Dark count rate vs T (at fixed gain)

Measurement: **rate of** \geq **1p.e.** at fixed gain (i.e. ~fixed Δ V)

T dependence: Dark Rate

Electric field engineering and silicon quality make huge differences in dark noise as a function of T

T dependence: PDE (SPAD/APD devices)

PDE dependence on T (Over-voltage fixed)

Combination of various effects:

- P₀₁ increases at low T because of increased impact ionizazion
- Optical attenuation length increased (Energy gap increases) at low T
- Depletion region widening in APDs, but not in SiPM which are fully depleted

Similar effect expected also for SiPM

Temperature (K)

SPAD: Cova el al, Rev.Sci.Instr. 7 (2007)

QE: Efficiency of a single cell

Two factors in QE:

- (1) transmittance of the entrance window (dielctric on top of silicon surface)
- (2) probability of a photon inside to generate a e-h pair in the active layer (internal quantum efficiency)

Only the depleted region is fully active to efficiently photo-generate because of high recombination probability in the un-depleted regions.

Only a small layer ($\lambda_{diffsion} \sim \sqrt{D\tau_{recomb}}$) at the edge of un-depleted regions contributes to the photo-generation (critical for UV light)

QE optimization

- Anti-reflective coating (ARC)
- Shallow junctions for short $\boldsymbol{\lambda}$
- Thick epi layers for long $\,\lambda$

QE: Efficiency of a single cell

Direct access to internal QE and transmittance through ARC by measuring photo-voltaic regime ($V_{bias} \sim 0 V$) the photon detection efficiency of a diode with the same n⁺/p junction structure and same ARC

48

Avalanche trigger probability (P_{01})

photo-generation in the p-side of the junction

7E+05

6E+05

2E+05

1E+05

3E+05

4E+05

E field (V/cm)

5E+05

Avalanche trigger probability (P_{01})

Only h⁺ cross the high E field trigger the avalanche

IRST devices

PDE vs ΔV

 $\sim \Delta V/V$

"Statistics of Avalanche Current Buildup Time in Single-Photon Avalanche diodes" C.H.Tan, J.S.Ng, G.J.Rees, J.P.R.David (Sheffield U.) IEEE J.Quantum Electronics 13 (4) (2007) 906 p-on-n structure

G.Collazuol - IPRD08 4/10/2008

52

Experimental Setup

SPTR: HPK/CPTA comparison T.lijima – PD07 Nagoya and Lubiana groups

Method: CFD + TDC + Time walk corrections

Compatible with DASIPM measurements

SPTR: cell and sipm size dependence

SiPM – MePhl/Pulsar: 576 cells ($25x25\mu m^2$) Area = $1x1 mm^2$

B.Dolgoshein – LIGHT07

SiPM – MePhI/Pulsar: 1600 cells ($100x100\mu m^2$) Area = $5x5 mm^2$

SiPM signal: effect of C_{tot} and Z_{load}

SiPM – MePhI/Pulsar: 1600 cells (100x100 μ m²) Area = 5x5 mm² C_{tot}~ 160pF

BDolgoshein and E.Popova LIGHT07

Zin~50Ω FWHM~1 5 ns

Trans-impedance amplifier

RPL model vs data: comparison ... not yet

G.Collazuol - IPRD08 4/10/2008

57

Timing vs T (SPAD devices)

Timing: better at low T

Lower jiitter at low T due to higher mobility

(Over-voltage fixed)

I.Rech el al, Rev.Sci.Instr. 78 (2007)