CBM Iron yoke and support design

11 2019, BINP, M.Kholopov, A.Bragin, S. Pivovarov.

PDR CBM Dipole Magnet

3D Model of CBM Magnet and cryosystem

3D Model of CBM Magnet (new design)

Iron Yoke and supports drawing

Weight and size

- m= 150000 kg
- L=4620mm
- W=2380mm
- H=4550mm

Iron Yoke 3D Model

Iron Yoke and supports drawing

Drawings are processed in technologists and prepared for translation.

An example of the implementation of the yoke of sheet material.

An example of the implementation of the yoke of sheet material.

An example of the implementation of the yoke of sheet material.

CBM Magnet support

04.12.2019

PDR CBM Dipole Magnet

Magnet supports drawing

Bottom supports drawing

Intermediate frame drawing

Top frame drawing

PGslide[®] Kalotten- Gleitlager mit 1 PTFE- Gleitelement, geführt **PGslide[®] spherical slide bearing** with 1 PTFE pad, guided

	Lasten / I	Abmessungen / dimensions														
Typ /	max.NS,d	Vy,sd	А	В	С	D	T _A	T _G	Н	dL	L ± 20	L ± 40	L ± 80	E ± 20	E ± 40	E ± 80
type	[KN]		[mm]													
K 11sb	100	20	200	100	160	60	10	10	55	14	120	160	240	80	120	200
K 11sb	250	50	250	140	210	100	10	15	65	14	160	200	280	120	160	240
K 11sb	500	100	330	180	280	120	15	20	77	18	200	240	320	150	190	270
K 11sb	750	150	370	210	320	150	15	20	85	18	230	270	350	180	220	300
K 11sb	1.000	200	420	240	360	170	20	25	95	22	260	300	380	190	230	310
K 11sb	1.500	300	520	290	440	200	20	25	100	26	310	350	430	230	270	350
K 11sb	2.000	400	620	330	520	230	30	30	117	32	350	390	470	250	290	370
K 11sb	2.500	500	670	370	570	270	30	40	133	32	390	430	510	290	330	410
K 11sb	3.000	600	700	400	600	300	30	40	133	32	420	460	540	320	360	440
K 11sb	3.500	700	760	430	660	330	30	50	150	32	450	490	570	350	390	470
K 11sb	4.000	800	810	450	690	330	35	55	158	38	470	510	590	350	390	470
K 11sb	4.500	900	870	480	750	360	35	55	165	38	500	540	620	380	420	500
K 11sb	5.000	1.000	890	500	770	380	35	55	164	38	520	560	640	400	440	520

PTFE plate can be replaced with radiation resistant material. For example bronze with lubrication.

PTFE bearings are maintenance-free, this also applies to lubricated PTFE bearings;

Very Low Friction Constant

For the sake of simplicity, the following friction constants may be assumed under optimum installation conditions:

PTFE bearing, not lubricated about max. μ = 0.1

PTFE bearing, lubricated about max. μ = 0.04

The PTFE slidingplates are absolutely corrosion resistant, re-sistant against chemicals and aging. The steel parts of the bearings are by standard sandblasted and provided with a zinc phosphate coating. Upon request, all usual corrosion protection processes are of-fered, including hot galvanizing. Versions made of special steel alloys or stainless steel on request

Fastener strength tablet

cla	ss of fas	teners	ST-	4.6	ST-	-8.8	A2	-70	A4-80		
Thread	d2, мм	Площадь по d2, mm2	MAX load, N	Work load, kg	MAX load, N	Work load, kg	MAX load, N	Work load, kg	MAX load, N	Work load, kg	
	00	0.5	4.04		200		4.00		454		
		U,D	121	U 	JZZ			U 	101	U	
M Z	1,1	2,27	544	20	1 452	/0	567	20	681	JU	
M 3	2,6	5,31	1 274	60	3 396	160	1 327	60	1 592	70	
M 4	3,5	9,62	2 308	110	6 1 5 4	300	2 404	120	2 885	140	
M 5	4,4	15,2	3 647	180	9 726	480	3 799	180	4 559	220	
M 6	5,3	22,05	5 292	260	14 112	700	5 513	270	6 615	330	
M 8	7,1	39,57	9 497	470	25 326	1 260	9 893	490	11 872	590	
M10	8,9	62,18	14 923	740	39 795	1 980	15 545	770	18 654	930	
M12	10,7	89,87	21 570	1 070	57 520	2 870	22 469	1 120	26 962	1 340	
M14	12,6	124,63	29 910	1 490	79 761	3 980	31 157	1 550	37 388	1 860	
M16	14,6	167,33	40 159	2 000	107 092	5 350	41 833	2 090	50 1 99	2 500	
M20	18,3	262,89	63 093	3 1 5 0	168 249	8 410	65 722	3 280	78 867	3 940	
M24	21,9	376,49	90 359	4 510	240 956	12 040	94 1 23	4 700	112 948	5 640	
M27	24,9	486,71	116 810	5 840	311 493	15 570	121 677	6 080	146 012	7 300	
M30	27,6	597,98	143 516	7 170	382 708	19130	149 495	7 470	179 394	8 960	

Screw jack Rack : design and calculation

Screw jack Rack : design and calculation

added seismic hazar (20 tons)

Intermediate frame : design and calculation

Top frame : design and calculation

Gimbals : design and calculation

Calculation of studs for Pole CBM magnet

04.12.2019

PDR CBM Dipole Magnet

Calculation of Pole & crossbar CBM magnet

04.12.2019

PDR CBM Dipole Magnet

Thank you for your attention!