

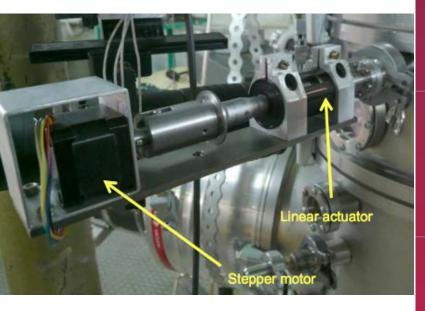
Pellet target report

A.Gerasimov, V.Chernetsky, M.Büscher^{*}, P.Fedorets, A. Kantsyrev, E. Lushchevskaia, V.Panyushkin, A.Panyushkina, A.Bogdanov, A.Dolgolenko, P.Balanutsa, E.Ladygina, L.Gusev, S.Mineev, I.Tarasenko, V.Demekhin, A.Golubev, S.Makagonov, N.Kristi, V.Karasev

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre «Kurchatov Institute» Moscow, Russia

> *Peter Grünberg Institut PGI-6 Elektronische Eigenschaften Forschungszentrum Jülich, Germany

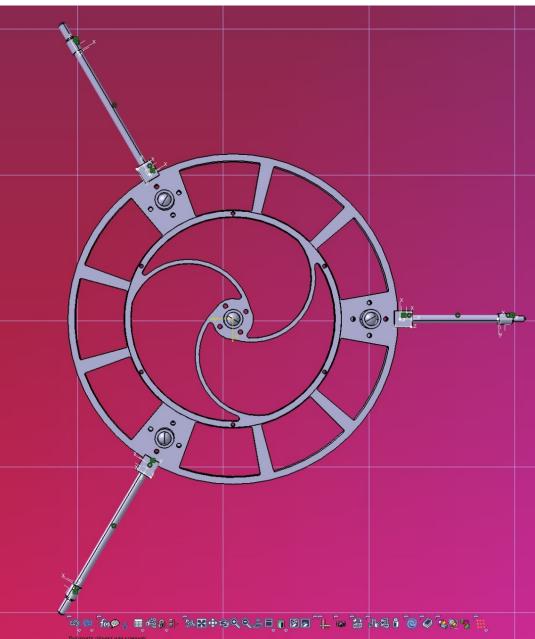
PANDA Meeting, Darmstadt, November 4-8, 2019

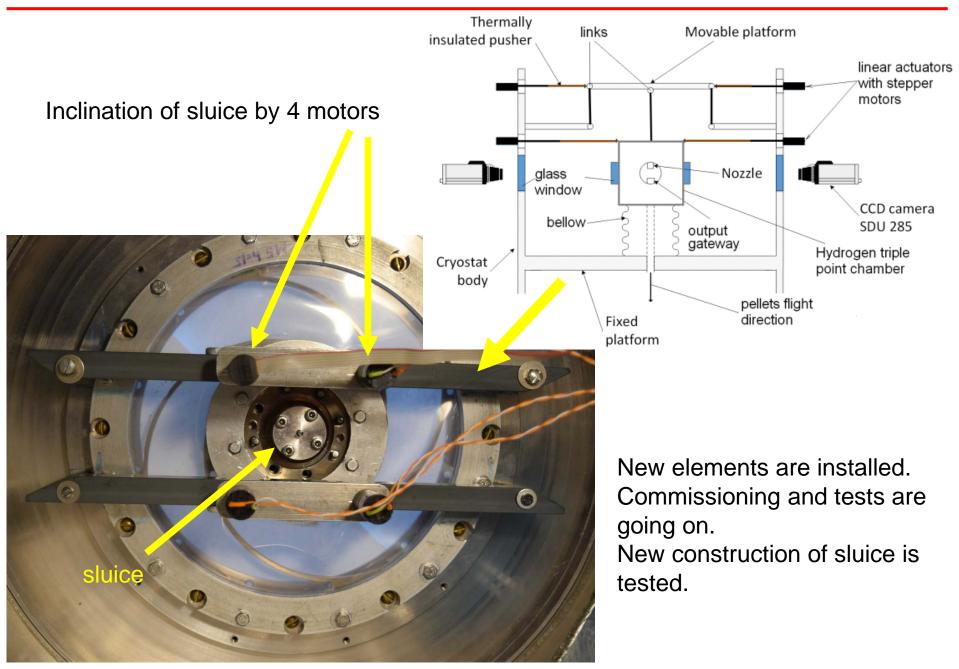

Main status

- 1. Continue R&D for TDR
- 2. Preparation of the TDR

Current activities of young colleagues

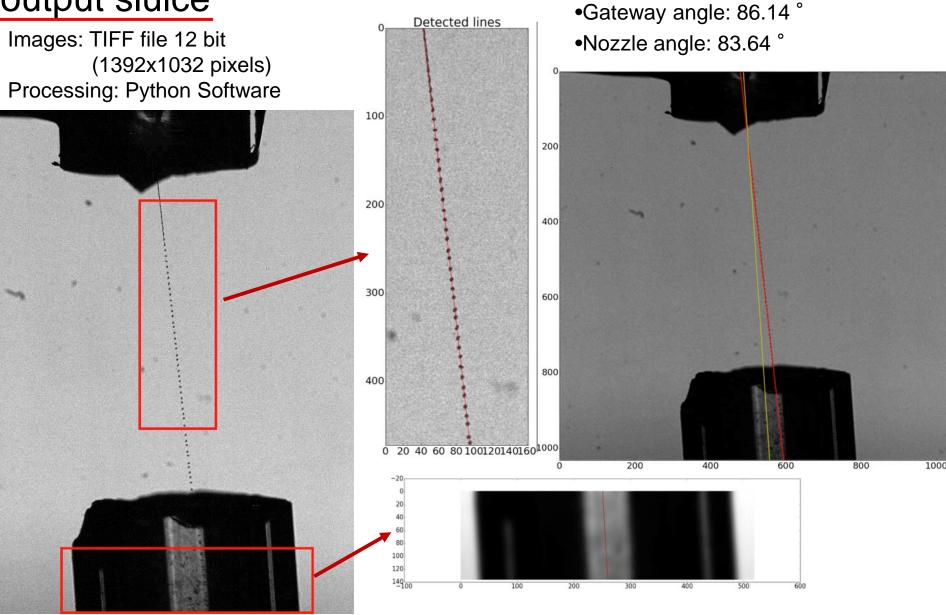
- 1. Operation and study of the adjustment system.
- 2. 3D design of the Pellet target
- 3. Simulation of temperature distribution inside the target


Adjustment system elements

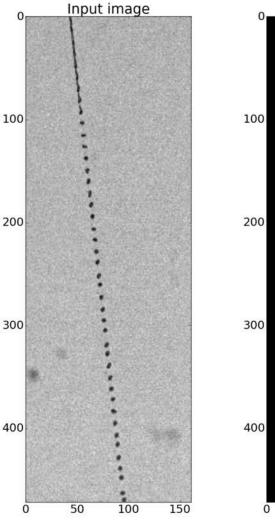

operated via **L-CARD E14-140** controller for four axes:

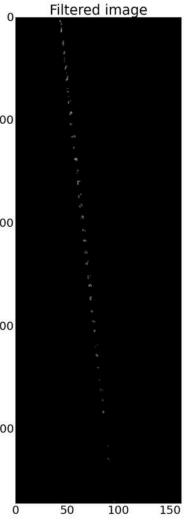
- 4 stepper motors

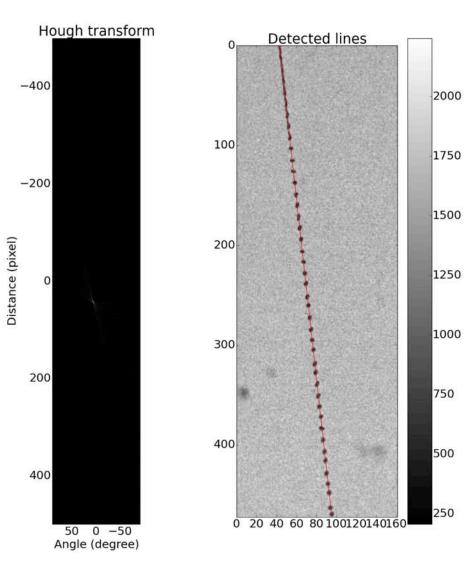
- Tested with L-Card controller and Delphi prog.



Development of the adjustment system

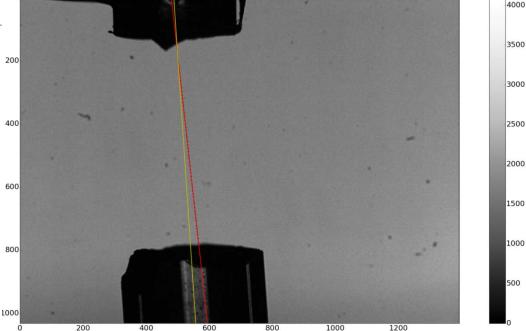

Visualization of the nozzle axis deviation relative to the

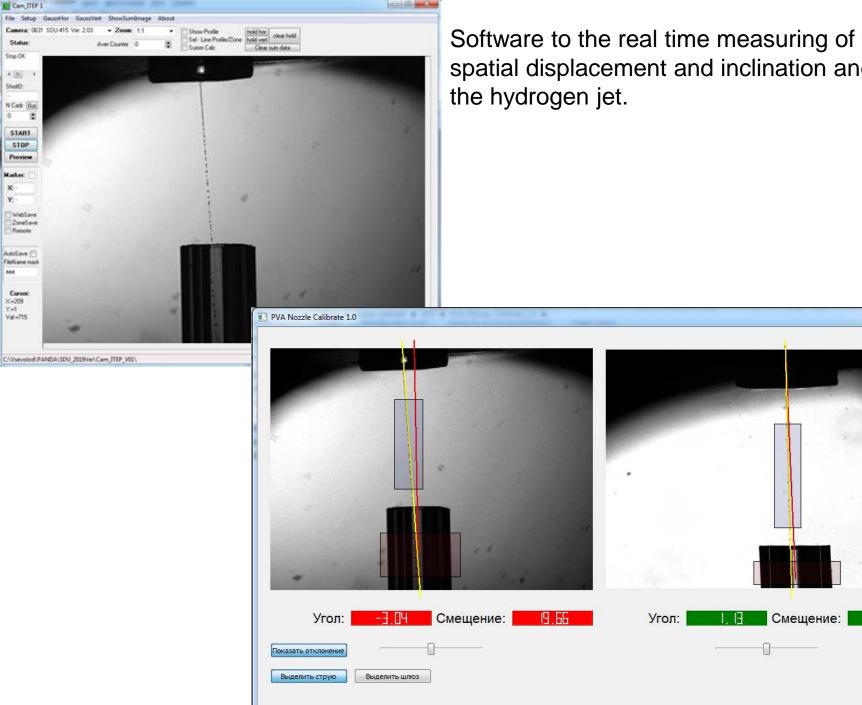

output sluice



Search for a straight line of hydrogen droplets.

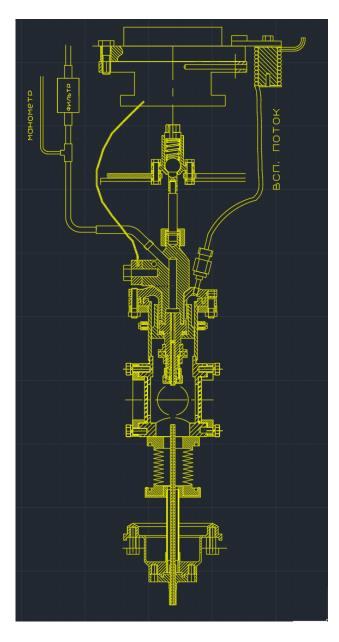
The Hough transform algorithm for the program search of droplets jet position





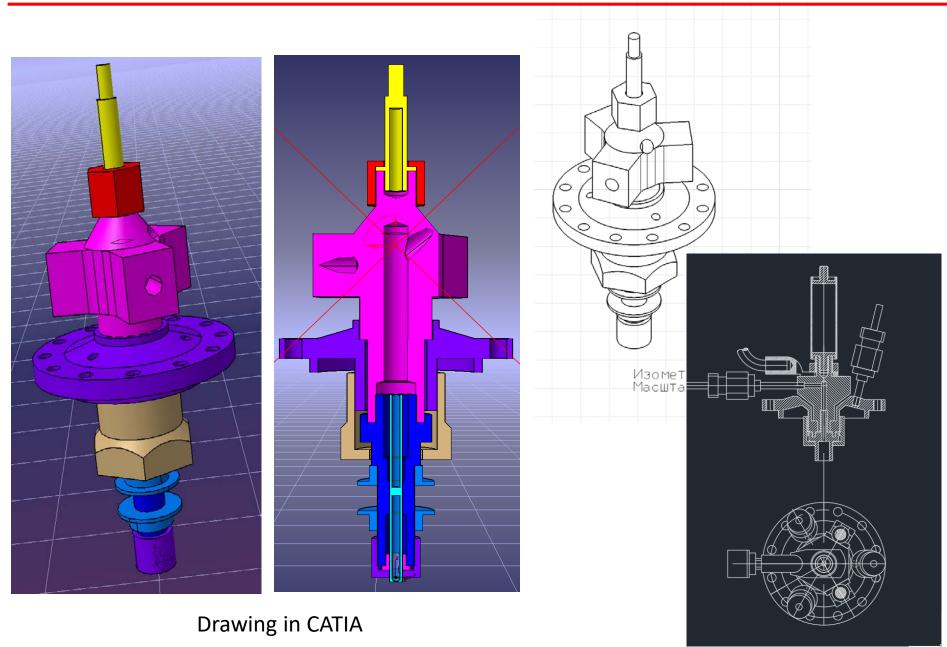
Search of the sluice axis

The result of visualization of the nozzle ⁴⁰⁰ axis deviation relative to the output sluice of the triple point chamber (sluice ⁶⁰⁰ rotation angle relative to the vertical axis is 3.86°, nozzle rotation angle is ⁸⁰⁰ 6.36°).

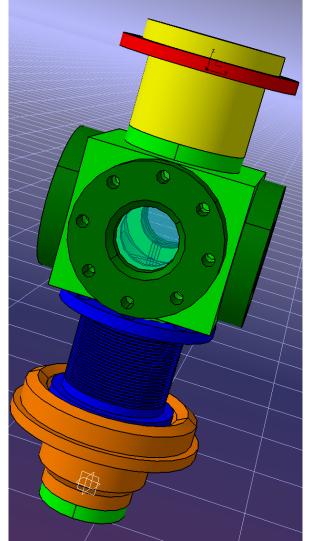

Software to the real time measuring of the spatial displacement and inclination angle of

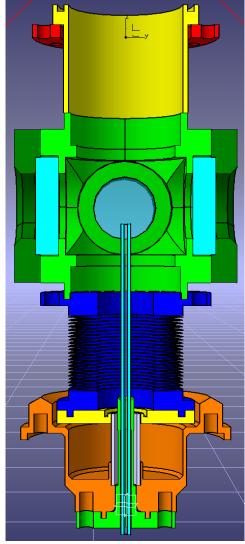
- -

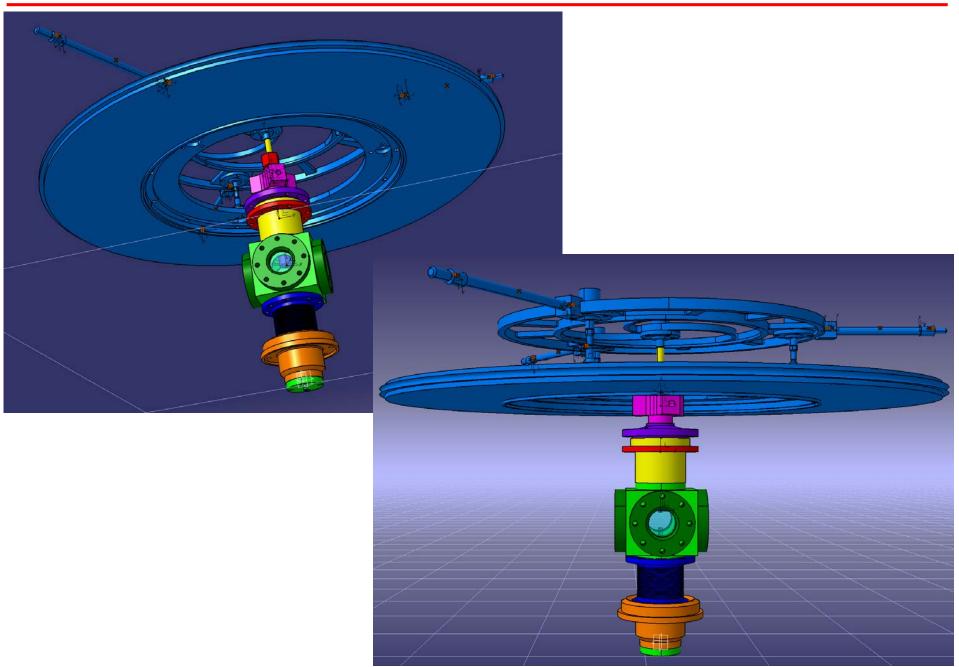
Tasks


- Development and optimization of the construction of a pellet target for the PANDA experiment using the CATIA software package
- ✓ Using of 3D design of a pellet target to select a construction with an optimal distribution of heat and mass flows.
- Presentation of 3D construction of a pellet target for Technical Design Report.

Liquid formation unit




Cooler condenser and nozzle

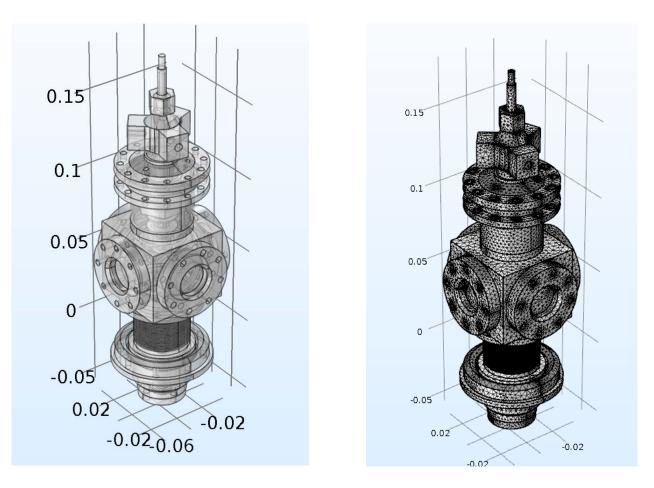

Triple Point chamber and sluice unit

Current result

Study of heat transfer in the triple point chamber of the Pellet target

Issues:

1) Make sure that program calculations coincide with the experimental data


2) Build an existing picture of the temperature distribution in the triple point chamber

3) Evaluate the effect of convection of the main and additional flows

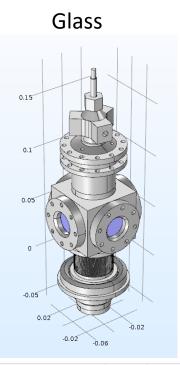
4) Evaluate the effect of radiation from the walls

5) Design optimization to achieve the required temperature during operational in normal mode

The object of the work

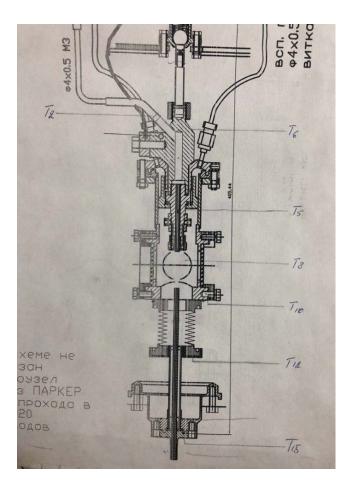


characteristics of the Assembly chamber of the triple point
Domains: 28. Faces: 1013. Edges: 2201. Points: 1384. CAD objects: 28.


Material characterization

Steel

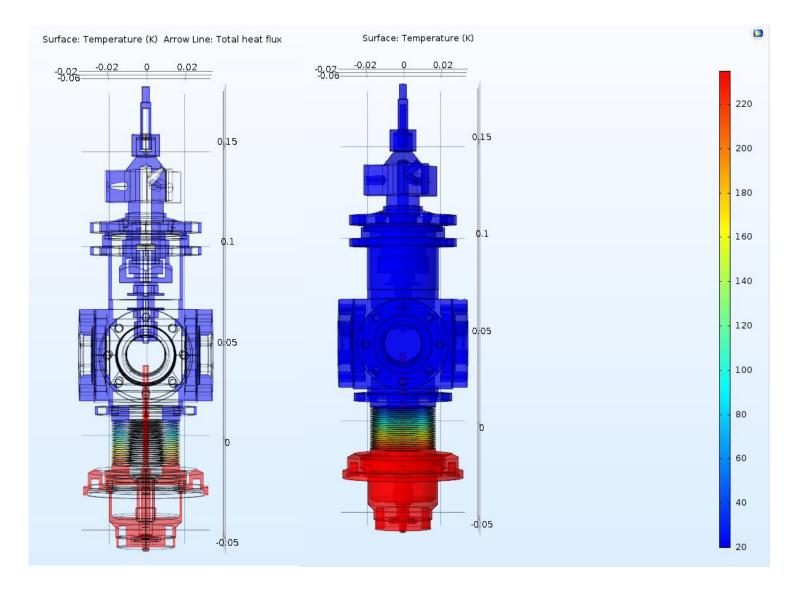
**	Property	Name	Value	Unit	
\checkmark	Heat capacity at constant pres	Ср	475[J/(k	J/(kg·K)	
\checkmark	Density	rho	no 7850[kg		
\checkmark	Thermal conductivity	k	44.5[W/	W/(m•	
	Relative permeability	mur	1	1	
	Electrical conductivity	sigma	4.032e6[S/m	
	Coefficient of thermal expansi	alpha	12.3e-6[1/K	
	Relative permittivity	epsilonr	1	1	
	Young's modulus	E	205e9[Pa]	Pa	
	Poisson's ratio	nu	0.28	1	



PP				
	Property	Name	Value	Unit
\checkmark	Heat capacity at constant pres	Ср	385[J/(k	J/(kg·K)
\checkmark	Density	rho	8960[kg	kg/m³
\checkmark	Thermal conductivity	k	400[W/(W/(m·
	Relative permeability	mur	1	1
	Electrical conductivity	sigma	5.998e7[S/m
	Coefficient of thermal expansi	alpha	17e-6[1/	1/K
	Relative permittivity	epsilonr	1	1
	Young's modulus	E	110e9[Pa]	Pa
	Poisson's ratio	nu	0.35	1
	Reference resistivity	rho0	1.72e-8[Ω∙m
	Resistivity temperature coeffic	alpha	0.0039[1	1/K
	Reference temperature	Tref	298[K]	К

**	Property	Name	Value	Unit	
\checkmark	Density	rho	2210[kg	kg/m³	
	Thermal conductivity	k	1.4[W/(W/(m·	
	Heat capacity at constant pres	Ср	730[J/(k	J/(kg⋅K)	
	Relative permeability	mur	1	1	
	Electrical conductivity	sigma	1e-14[S/	S/m	
	Relative permittivity	epsilonr	4.2	1	
	Refractive index, real part	n	1.5	1	
	Refractive index, imaginary part	ki	0	1	

Initial temperature data



sensor layout diagram

Baselinde orweinig ATT i begopgwoor werneer Baselinder, i eine eegeg zienen A22 kult, onkourig KTT, werne a meerty 18-09 Therme He-AS Cance Kung och ming och concentrate bige process show 18-09 Therme He-AS Cance Kung och javing och concentrate bige process show 18-09 Therme He-AS Cance Kung och javing och concentrate bige process show 18-09 Therme He-AS Cance Kung och javing och concentrate bige process show 18-09 Therme He-AS Cance Kung och javing och concentrate bige process show 18-09 Therme He-AS Cance Kung och javing och concentrate bige process show	20319 16 5	onge hee.	11 01	rang	x pa	roemo	100				
Bernonics Ourservey RIT, account Machine R2 ^B But 1 Ourservey RIT, account Machine Ourservey RIT R2 ^B But 1 To T	The second se		e one	aung	ATT .	bago	4091100	F sectile	eer		1
19 ²⁵ Ruch autories RTL science a meanly 1000 M 10 M 20 Cance Know of science and chart to perform the term 100 M 10 M 10 M Cance Know of science and chart to perform the term 100 M 10 M 10 M 201 M 10 M 10 M 10 M 10	B	a uoque.						1011			
200 There is 11. 15 Cance Norme of proving on at cheerestare by proving the and the second and by the proving the and the second and the seco								wearty			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$						1		19			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$									T N S		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	12 00	Theon	14-0	5 Conce	16 unp	et ja	21103 0.0	to Secur	Lever 6	- 20 4100	Baron
10° 10° 10° 10° 10° 10° 10° 10° 10° 10°			FTC F	1/2 7	8 Tg	Fio Til	Fiz Fis	Tis V, V	a cpart	RS CSport	00 Nol
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 - 389 230	188 291	1 288 RS	1 290 29	1 991 8	91 191 3	190 889	10 1 3	日本に見たらした。		
11 111 114 <td>1015 ST</td> <td>pogyon</td> <td>con,</td> <td>*</td> <td></td> <td></td> <td></td> <td>15 13</td> <td>0 0</td> <td></td> <td></td>	1015 ST	pogyon	con,	*				15 13	0 0		
11 111 114 <td>10 10</td> <td>pr wou</td> <td>e cour a</td> <td>a so re</td> <td>secure</td> <td></td> <td></td> <td></td> <td></td> <td>1710</td> <td></td>	10 10	pr wou	e cour a	a so re	secure					1710	
Ale 1972 There is a property of the the set of the	11 141 141	146 100	5 250 2	18 360 9.	39 105 3	185 124	183 120	191 6 1	0,602	7 10	95
18:0913 Starren ta 18 (not tan from open no correct denet) Barren 15 19 19 19 19 19 19 19 19 19 19 19 19 19			IT IT IT	10 10 10	P IP IP	1 11 1	1 0 0	111	111	111	TVT.
18:0913 Starren ta 18 (not tan from open no correct denet) Barren 15 19 19 19 19 19 19 19 19 19 19 19 19 19								Jelee	eee	lede	
Alpenes 17 17 17 18 17 18 17 17 18 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	and a s	TITI	TIN UI	TIALL		I what	no dans	10 16.0001	AHH	ST LEVEL BUILDE	
115 415 43 43 45 46 41 40 44 43 44 43 46 46 46 46 46 46 46 46 46 46 46 46 46		and the second designed in	the second s		CT	1 1 1 1	110 100	1 AT THE WAY AND	100 101 101 10 10 10 10 10 10 10 10 10 1	- Same rides	1 Lugrox
15 ¹⁰ 54 55 61 11 31 11 11 11 11 11 11 11 11 11 11 11	Kpours Ti	1/ 13	14 15	180 255	102 26 3	154 ASE)	164 44 2	191 75 19	4 2312 10	- 905	ant
15 ¹⁰ 54 55 61 11 31 11 11 11 11 11 11 11 11 11 11 11	112 175 1	34 33 -	25 62	125 198 1	se 16 ,	cs& 117 1	(57 31 -	1.58 8.8 10	4 2/2 AVE 0004 45	- 203	gas
110° 38 30 59 10 10 10 10 10 10 10 10 10 10 10 10 10	11- 164 0		10 21	101 181	41 197	116 104 0	211 26 0	184 1.5 11	0000 51	0,5 0,03	903
1482 Janne grine 124 110 101 65 53 95 111 110 60 411 13 111 201 111 61 61 61 61 61 61 61 61 61 61 61 6	15 84 5	20 10	1. 24	95 173	35 18	124 124 3	to she	100 19 4	P.R. 45	6,5 4,0	qas
15° 91 10 128° 124 16 16 68 59 95 111 110 10 111 17 10 0 12 10 10 10 10 10 10 10 10 10 10 10 10 10	11 20	Se OU	y you		Bunce	19.1	op	-0	-204 0	10 10 000	- 005
Потое снове дляг, прият во 15 15 ¹⁰ ракен приер 16 ²³ ракен сулер 16 ²³ ракен сулер 16 ²⁴ до 20 89 116 113 80 65 85 114 121 28 151 59 ⁷ 66 ⁵ прос 25 0,5 0,6 0,5 0,1 14 ¹⁰ 96 81 120 20 89 116 113 80 65 85 114 121 28 151 59 ⁷ 66 ⁵ прос 25 0,5 0,5 0,1 14 ¹⁰ 765 Ганкен сересператори 14 ¹⁰ 66 84 64 14 10 44 157 14 15 45 102 443 28 141 2 ⁴ 15 ² 004 90 0,55 0,13 14 ¹² 66 84 64 14 10 44 157 14 15 45 102 45 102 45 28 141 2 ⁴ 15 ² 004 90 0,55 0,13 14 ¹² 66 84 64 14 10 44 0,44 0,44 0,44 0,41	100 01							A#2 1,2 1,7	0 10	1010 901	ast and
15 ¹⁰ Luter syrelp 16 ²⁰ Later syrelp 16 ²⁰ Lat 1900 16 ²⁰ Lat 1900 14 ²⁰ 06 81 130 70 89 116 163 80 65 85 117 182 78 151 39 ² 65 ³ gent 23 65 005 0/1 14 ²⁰ The starter representation 14 ¹⁰ 165 500 16 10 47 157 184 15 45 102 443 28 144 5 ⁴ 15 ² cell 90 0.55 0/3 14 ¹² 66 24 62 14 10 47 157 184 15 45 102 443 28 144 5 ⁴ 15 ² cell 90 0.55 0/3 14 ¹² 66 24 62 14 00 47 157 100 100 100 100 100 100 38 15 ³ cell ⁸⁴ (44 - 0/2	10 31	Thore	enels	guer ,	Mpexe	you were	garres	10 0.1	une y	1	Middy.
1623 Best 1910 163 Best 1910 164 96 81 120 70 75 116 113 80 65 85 117 184 78 153 59 65 65 65 61 184 96 81 120 70 75 116 113 80 65 85 117 184 78 153 59 65 65 65 0,1 181 76 76 76 76 76 76 76 76 76 76 76 76 76	1530										
14° Therefore comparison 15 45 102 445 28 14 2" 15° cell 50 0.55° 0.75 13° 66 24 64 14 10 44 155 44 15 45 102 445 28 14 2" 15° cell 50 0.55° 0.75 13° 66 24 64 14 00 44 05 000 15° 000 15° 000 15° 000 15° 0.44 - 0.12	1638	Bal	241	ep				101 235	-3 1	911 05 00	501
14° Therefore comparison 15 45 102 445 28 14 2" 15° cell 50 0.55° 0.75 13° 66 24 64 14 10 44 155 44 15 45 102 445 28 14 2" 15° cell 50 0.55° 0.75 13° 66 24 64 14 00 44 05 000 15° 000 15° 000 15° 000 15° 0.44 - 0.12	1140 96	81 130	20 29	16 163	80 65	85 141	122 78	151 54 6	6 6,002.3	28 -15	
17 ¹² 66 24 62 14 10 77 157 14 15 43 16 40 20 20 21 21 2 00 20 14 4 0 00 10 10 10 10 10 10 10 10 10 10 10 1	120	They ber	10.2 20	geachge	vcen				2	0.0.35	
1990 10 10 10 10 25 35 3" 15" out the UAL - Q12	1218 66	24 62	11. 10	47 1SF	\$4 15	75 102	175 23	141 2 1	3 opti	TIN	
$\frac{11^{\circ}}{11^{\circ}} \frac{59}{56} \frac{11}{20} \frac{52}{40} \frac{50}{10} \frac{16}{141} \frac{12}{10} \frac{151}{19} \frac{20}{19} \frac{15}{12} \frac{50}{56} \frac{59}{16} \frac{159}{25} \frac{159}{231} \frac{5^{\circ}}{9} \frac{15^{\circ}}{15^{\circ}} \frac{10^{\circ}}{001} \frac{10^{\circ}}{11} \frac{001}{10} - 012$			Идени	year	as one	-	105 00	245 34	1.5 0010	rer (44 -	- 0,12
11° 56 20 49 10 144 10 149 19 12 03 00 20120 23 0 1040 01	18 69	21 52	10 16	\$2 153	20 13	60 89	10 25	221 34	1.5-2 001	10×11 941	- 9/2
	1810 56	20 49	10 14	\$0 149	19 12	03 30	200-20	202 -	CI WT O		
							TINSI (NO.				

experimental data from the test 14-19

Calculation result

Results

- 1) The first test results of the program were obtained.
- 2) The great potential of this software is visible if you sort out some of the nuances.
- 3) The ability to visualize almost any physical process occurring inside the target