Status of the PANDA Solenoid Magnet Production in BINP

S.Pivovarov, E.Pyata, BINP, Novosibirsk

PANDA solenoid magnet, BINP responsibility

Figure 1. Arrangement of the components of the PANDA solenoid.

Development of the PANDA solenoid magnet

Name of item	Status of work		
Yoke and frame	Design is ready, production		
Cryostat of solenoid	Design is ready, technological development, Call for tender		
Cold mass	Design is ready, technological development, Call for tender		
	Development work, preparation Call for		
Conductor purchasing	tender		
Conductor purchasing Control Dewar box	tender Preliminary design December 2019		
Conductor purchasing Control Dewar box PANDA solenoid power cabling	tender Preliminary design December 2019 Design is ready, production		
Conductor purchasing Control Dewar box PANDA solenoid power cabling Power supply and energy extraction system	tender Preliminary design December 2019 Design is ready, production Detail design is ready, production		
Conductor purchasing Control Dewar box PANDA solenoid power cabling Power supply and energy extraction system Magnet safety system	tender Preliminary design December 2019 Design is ready, production Detail design is ready, production in process		

The main milestones of the yoke production

Name of milestone	Date 2017/10			
FDR of the yoke	20-25/11/2017			
Contract with SibMash (SET), signed	2/11/2017			
Purchasing raw materials (1 st batch, 60 t)	26/12/2017			
Start of production of the 1 st octant	01/2018			
Status production				
First octant production, W3	11/2018			
Welding of 8 octants	ready			
Machining of 6 octants	ready			
Final machining of the vertical octant	11/2019			
Final machining of the upper octant	11/2019			
Production of the Upstream door	11/2019			
Production of the Downstream door	11/2019			
Production of a tooling for the yoke assembly	11/2019			

Table 3. The main milestones of the yoke production.

The main milestones of the yoke production

Name of milestone	Date 2017/10
Production of the all barrel octants	11/2019
Production of the frame and beams	11/2019
Production of the doors	12/2019
Control assembling at SET	12/2019
Finalization of the parts	12/2019-01/2020
Assembling of the Yoke at BINP	? Q2-2020

Table3. The main milestones of the yoke production.

The main milestones of the Cryostat production

Name of milestone	Date 2017/10	Date 2017/10			
FDR of the Cryostat	08/02/2019	08/02/2019			
FDR of the Cold Mass	17/04/2019	17/04/2019			
Status production					
Cryostat	Design is ready, technological development, Call for tender				
Cold Mass	Design is ready, technological development, Call for tender				
First Prototype of the Coil	11/2019				
Tooling for winding Coil (and Prototype)	11/2019				
Tooling for impregnation of Coil (and Prototype)	11/2019				
2 nd and 3 rd Prototype production	12/2019 – 02/2020				
Tooling for assembling of the Magnet	Design is ready, technological develo Call for tender	pment,			
Tooling for installation of the Magnet into the Yoke	Design is ready, technological develo Call for tender	pment,			

 Table 3. The main milestones of the Cryostat production.

Status of the PANDA conductor development/ procurement

Main risks

mass

• Purchasing super conductive conductor - lack of a manufacturers

Rutherford cable, 8 strands, extruded in Al matrix

Thickness (after cold work) at 300 K	mm	7.93	± 0.03
Width (after cold work) at 300 K	mm	10.95	± 0.03
Critical current (at 4.2 K, 5 T)	A	> 14690	
Critical current (at 4.5 K, 3 T)	А	> 16750	
Overall Al/Cu/sc ratio		10.5/1.0/1.0	
Aluminum RRR (at 4.2 K, 0 T)		> 1000	
Al 0.2% yield strength at 300 K	MPa	> 30	

Table 7. Conductor mechanical and electrical parameters.

Figure 9. Drawing of the conductor.

Status of the PANDA conductor development/ procurement

Rutherford cable co-extrusion/ conklad in a pure Al

Plan

- Production of new dies Tests of the Conklad
- Cryogenic tests in CERN/ VNIIKP

- July 2019 ready. - July 2019. - ready
 - December 2019/ February 2020

Request 1000m <u>Cu Rutherford cable</u> for tests in SARKO – preparation of the contract

Preparation contracts for PANDA <u>NbTi strands</u> production, VNIINM - 11-12/2019

Preparation contracts for PANDA <u>Rutherford cables</u> production, VNIIKP - 1-2/2020

1000m Cu Rutherford cable for tests in SARKO - 02-03/2020

Preparation contracts for PANDA conductor production with SARKO - 02-03/2020

Status of the PANDA conductor development/ procurement

Rutherford cable co-extrusion/ conklad in a pure Al Plan

Procurement A995/998 wire 9,5 mm

- Preparation of the contract for purchasing 3500 kg A995 aluminum raw material;
- Sign of the contract for production A995/998 wire \emptyset 9,5 mm with NANOELECTRO:
 - First step production from A995 aluminum raw material 147 kg;
 - 2nd step production 2500 kg A995/998 wire 9,5 mm.

Conklad - 02/2020 in SARKO with prototype PANDA cable and A995/998 wire 9,5 mm.

Tests of the prototype PANDA cable and A995/998 matrix after Conklad - 02-03/2020

Co-extrusion/ Conklad – 02/2020 in SARKO with Cu Rutherford cable 1000m and A995/998 wire 9,5 mm.

Cold work to result the overall geometrical conductor dimensions - 03-04/2020

Production PANDA NbTi strands - 06-07/2020

Production PANDA NbTi conductor with A995 matrix - 07-08/2020

Sarko.

- Produced about 20 meters a conductor from A95 and NbTi cable;
- 4 pieces the conductor 3,5m prepared for following tests;
- Mechanical tests should be in BINP;
- Cryogenic tests for RRR and critical currents should be carried out in Bochvar institute and CERN.

3D model of the Yoke and Frame.

Module production

Module after welding

Finished module

S.Pivovarov, E.Pyata, BINP

Upstream Door production

Downstream Door production

S.Pivovarov, E.Pyata, BINP

Beam production

Top Frame production

Vertical Beams production

Angle Beams production

3D model of the Magnet and Control Dewar.

The Prototype of the Coil (3pcs.)

d = 1m, L=180 mm

Conductor: AI - 10,85 мм x 7.93 мм,

6 layers - 16 turns

PANDA Magnet

Drawing of the Devices for winding coil (scheme).

Design is ready, production

Drawing of the Device for impregnation coil (scheme).

Design is ready, production

Tooling for winding and impregnation coil of Prototype

05.11.2019

S.Pivovarov, E.Pyata, BINP PANDA Magnet

Tooling for assembling of PANDA Magnet

Tooling for installation of the Magnet into the Yoke

Installation procedure of the Magnet into the Iron Yoke

Insert removable support and install the rollers system for moving magnet.

Thank you for your attention S.Pivovarov, E.Pyata, BINP PANDA Magnet