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Measurements 08/2019 @COSY
• 2 isotherm, 1 isobar measured:

 Different cluster sizes

 Different cluster production processes

 Systematic measurements: 

• signal/background ratio, residual gas, 
detector answers, cooling performance, 
long./trans. momentum spread, …

• Everything in dependence of 3 p beam currents

• ~ (2 x 1010 / 0.6 x 1010 / 0.3 x 1010 ) protons

• First time: Systematic stochastic cooling measurements possible

 Analysis ongoing, first results shown in the following

liquid gaseous

super critical

H2 vapour pressure curve

2

T / K

p 
/ b

ar



   
     

   

   

Beam-Jet Interaction and Vacuum Effects from 08/2019 COSY Beam Time

Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2019/3

Lateral Momentum Cooling
• Target: 5.2 x 1014 atoms/cm2

• Barrier bucket and longitudinal cooling active

• < 5% particle loss in 300s, 1.7 x 1010 protons injected

• dp/p = 1.2 x 10-4

• COSY: 
1 x Kicker/ 1 x PU

 HESR:
3 x Kicker /2 x PU

long. cooling active

Cycle time:
t =  25s
t =285s

long. Cooling:
on/off
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Momentum Stability
• Measured in August 2019 @COSY:

• Target: 5.2 x 1014 atoms/cm2

• COSY:  1.7 x 1010 protons (~HR)

• Momentum spread: 
dp/p = 1.2 x 10-4

• Mean momentum accuracy : 
δp/p = 1.4 x 10-7

• Assumed in [1] for resonance scans:

• Total momentum spread: 
dp/p = 1 x 10-4 (HL) / 2 x 10-5 (HR) / 5 x 10-5 (P1) 

• Accuracy in relative beam adjustment: δp/p = 10-6

 We are on a good way!

long. Cooling: on/off

[1] Precision resonance energy scans with the PANDA experiment at FAIR, 
Sensitivity study for width and line shape measurements of the X(3872), 
DOI 10.1140/epja/i2019-12718-2
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Cluster Evaporation
• Proton beam horizontal wobbling 

over cluster-jet

• Target thickness of 1 x 1013 atoms/cm2

(very difficult to see at higher thicknesses)

• During beam-target overlap: 

• Increase in pressure and detector rates

• Dependence of p beam current

• Bethe-Bloch, target thickness, pressure increase, 
pump configuration:

 Cluster bonding energy: O(van der Waals)

 Analysis ongoing

 Need to have a closer look into in upcoming 
beam times

1.9 x 1010 p

0.8 x 1010 p

p beam
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Vacuum Optimization at IP
• Measurements at COSY and WWU Münster confirmed that the vacuum situation at the PANDA IP is a severe 

problem at PANDA

• At highest thickness of  2 x 1015 atoms/cm2 residual gas flows of O(10-2 mbar l/s) into the PANDA IP

• A simple approach would be putting a cryo pump into the beam line: 

z: -94 cm, length: 75 cm z: -293 cm, length: 75 cm

p beam
p beam

or
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Vacuum Optimization at IP

• A cryopump with a diameter of 60 mm, a length of 750 mm, and a pumping speed of 20 l/s cm-2 would reduce
the integrated residual gas thickness by a factor of > 3, and extend beam lifetime.
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Vacuum Optimization at IP
• Every minimization of pumping speed and/or PANDA beam pipe diameter would worsen the vacuum situation

• As shown, a cryo pump inside the beam pipe would be very beneficial

• Starting to prototype an optimal design, size, heat shielding, etc., would be a good idea for the PANDA vacuum 
conditions

• Münster could handle this task in future, having the possibilities to:

• Do vacuum calculations, design studies, etc.

• Having build cryo pumps in the past

• Do measurements with a pump prototype at the PANDA Prototype in Münster 
and perhaps with the final PANDA target at COSY in future

Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2019/3 8
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Summary
• Measurements done at COSY and analysis ongoing:

• 1 isotherm, 2 isobars of cluster conditions

• cluster sizes/evaporation/vacuum influences

• Beam-target interaction with trans./lateral stochastic cooling

• First time: Systematic stochastic cooling measurements with target possible

• Excellent cooling performance with 5.2 x 1014 atoms/cm2 target

• First time successful data taking of cluster evaporation process

• Need to optimize IP vacuum:

• Idea presented of an internal cryo pump

• Possibility to be build and tested at WWU Münster at the PANDA Prototype and final Target

1.9 x 1010 p

Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2019/3 9
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Vacuum Studies

• Hydrogen partial pressures with cluster
beam on

• 4.1x1014 H-atoms/cm2 at PANDA IP
• 2.25 m behind the nozzle

• Partial pressures from other gases and
water completely negligible

• Pumping speed at IP in Münster 
corresponds to the one later at PANDA 
(~ 100 l/s)

Erzeugung von η-Mesonen

C = 121 l/s
2nd Stage

3rd Stage
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Transition Vacuum
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Flow: 0.66 mbar· l/s
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C = 19 l/s

C = 23 l/s

C = 179 l/s
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Vakuum Studies

• Study the effect of bouncing clusters or
evaporation from clusters

• Subtraction of back streaming gas from 3rd beam dump
stage

• Switch cluster beam off
• Load 3rd beam dump stage with hydrogen gas so that

the same pressure with cluster beam is obtained (i.e. 
4x10-5 mbar)

• Appreciable effect only in 2nd beam dump stage
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C = 179 l/s
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Vakuum Studies

• Obviously the obtained gas load to
the IP result from

• Gas load from neighbouring chambers
• Conductance between the vacuum stages
• Possible evaporation of gas from clusters
• Possible bouncing clusters

• The last two contributions seem to
be significant

Erzeugung von η-Mesonen
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314 l/s

1.2 x 10-5 mbar
97 l/s
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C = 19 l/s
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C = 179 l/s6 x 10-3 mbar· l/s
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4 x 10-4 mbar· l/s

1 x 10-3 mbar· l/s
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Vakuum Studies

• Further studies on this aspect in 
preparation

• Variation of orifices (limitation by cluster beam size)
• Variation of working points, i.e. stagnation

conditions at the nozzle

• Estimation for given example
measurement:

• 1.2x10-5 mbar ≙ 6.4x1011 atoms/cm3

• 1 m of this pressure along the PANDA beam pipe
corresponds to 6.4x1013 H-atoms/cm2, i.e. 15.6% of
the target thickness

Erzeugung von η-Mesonen

C = 121 l/s
2nd Stage

3rd Stage

1st Stage

Transition Vacuum
Chamber

Scattering
Chamber

IP

2.1 x 10-4 mbar
640 l/s

9.8 x 10-6 mbar
314 l/s

1.2 x 10-5 mbar
97 l/s

4.3 x 10-6 mbar
1020 l/s

3.4 x 10-6 mbar
1840 l/s

3.8 x 10-5 mbar
2970 l/s

Collimator 
Chamber

5.7 x 10-3 mbar Jet Beam
4.1 x 1014 atoms/cm2 

@14 bar, 24 K, 2.25m (IP)
Flow: 0.66 mbar· l/s

3.1 x 10-3 mbar· l/s

0.13 mbar· l/s

1.1 x 10-3 mbar· l/s

4.4 x 10-3 mbar· l/s

6.2 x 10-3 mbar· l/s

0.11 mbar· l/s

C = 7 l/s

C = 19 l/s

C = 23 l/s

C = 179 l/s6 x 10-3 mbar· l/s

1 x 10-4 mbar· l/s

1 x 10-4 mbar· l/s

4 x 10-4 mbar· l/s

1 x 10-3 mbar· l/s
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Beam Dump Efficiency: Gas in Last Dump Stage

Erzeugung von η-Mesonen

Relevant pressure range
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