

Electromagnetic processes at PANDA TL form factors - Hard exclusive processes - Drell Yan current activities

Alaa Dbeyssi

Helmholtz-Institut Mainz

PANDA CM (GSI) 05.11.2019

Outline

Publications/release notes in progress Monte Carlo event generators Ongoing analyses

Electromagnetic Form Factors of the Proton

Publications/release notes in progress

Feasibility studies for the measurement of time-like proton electromagnetic form factors from $\bar{p}p\to\mu^+\mu^-$ at $\rm \overline{P}ANDA$ at FAIR

The PANDA Collaboration

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

- Results are approved
- Journal paper has been finalized (currently under internal review)
- To be submitted to the PANDA Pub.
 Com. within the next weeks
- Target journal: EPJA

Iris Zimmermann at al., HIM

Results for Phase-3 (L=2 fb⁻¹)

Publications/release notes in progress PANDA Phases1,2 (0.1 fb⁻¹) - Proton form factors $\overline{p}p \rightarrow e^+e^ \overline{p}p \rightarrow \mu^+\mu^-$

- Muon case: results are approved
- Electron case: comments from referees have been answered and accepted

$\overline{p}p \rightarrow e^+e^-$	revision 25544		DEV2019		P=1.5 GeV/c
Cut	Signal	Background	Signal	Background	
Reconstruction	86	85	84.5	84	
Kinematical cuts (θ, ϕ)	94	96	94	96	
dE/dx_{STT}	81	$2.5 imes 10^{-1}$	81	$2.9 imes 10^{-1}$	
E_{EMC}/p , EMC LM, EMC E1	79	6×10^{-3}	74	7×10^{-3}	
$PID_{STT} > 0.1$	95	1.3	95	1.2	
$PID_{EMC} > 0.1$	82	$8.3 imes 10^{-2}$	80	3×10^{-1}	
$\operatorname{PID}_{MVD} > 0.1$	87	65	93	89	
$PID_{DRC} > 0.1$	96	79	87	79	
$\operatorname{PID}_c > 0.99$	82	5×10^{-3}	80	$2.7 imes 10^{-2}$	
Reconstruction $+$ all cuts	39.5	$6.1 imes 10^{-6}$	35	1 event	

PandaRoot	R	$R \pm \Delta R$
revision 25544	1	1.02 ± 0.040
DEV2019	1	0.96 ± 0.042

The 2 PandaRoot versions provide the same results on the determination of the proton form factors

 Nucleon structure part in the PANDA Phase-1 paper has been updated and ready for review

Publications/release notes in progress PANDA Phases1,2 (0.1 fb⁻¹) - Proton form factors

Radiative corrections on $\overline{p}p \rightarrow e^+e^-$ at **PANDA - Monte Carlo event generator**

Yu.M. Bystritskiy, V.A. Zykunov (JINR, Dubna) M. Zambrana, E. Tomasi-Gustafsson, F. Maas and A. Dbeyssi

Frits A. Berends, K. J. F. Gaemer, and R. Gastmans. Nucl. Phys. B75, 546 (1974).
Frits A. Berends, K. J. F. Gaemers, and R. Gastmans. Nucl. Phys. B63,381–397 (1973).
A.I. Ahmadov et al. Phys. Rev. D 82, 094016 (2010)
A. G. Aleksejevs, S. G. Barkanova, and V. A. Zykunov, Phys. Atom. Nucl. 79, 78 (2016)

Born differential cross section:

$$\frac{d\sigma_{\rm B}}{d\cos\theta} = \frac{\pi\alpha^2}{2\beta s} \left[(1+\cos^2\theta)|G_M|^2 + \frac{1}{\tau}\sin^2\theta|G_E|^2 \right]$$

Extraction of the proton form factors

QED radiative corrections:

Modify the value of the cross section

$$\sigma = \sigma_B \left(1 + \delta_V + \delta_\gamma \right).$$

- Modify the value of the experimental signal efficiency (e.g. hard photon)
 - Monte Carlo event generator with dedicated calculations is needed

Virtual and real soft photon emission

- Real soft photon emission: $E_v < \Delta E$ (<10⁻² \sqrt{s} / 2), no experimental detection of the photon
- Two body final state (e⁺e⁻) : same kinematics as Born process but with a modified cross section

Talk by E. Tomasi, EMP session, PANDA CM June 2019

Virtual and real soft photon emission

- Real soft photon emission: $E_v < \Delta E$ (<10⁻² \sqrt{s} /2), no experimental detection of the photon
- Two body final state (e⁺e⁻) : same kinematics as Born process but with a modified cross section

Talk by E. Tomasi, EMP session, PANDA CM June 2019

Real soft+hard photon emission

$$p(p_1) + \bar{p}(p_2) \rightarrow e^+(k_1) + e^-(k_2) + \gamma(k),$$

Differential cross section as function of 5 variables in the CMS: $d\sigma_R = (\Sigma) dE_{\gamma} d\theta_{\gamma} d\phi_{\gamma} d\cos\theta$

- Collinear kinematics: photon emitted collinear to the direction of the electron or ٠ positron:
 - Peaks which leads to a reduction in the efficiency and in the accuracy of the of the Monte Carlo event generator 10

Real soft+hard photon emission

Importance Sampling method (F. james, rep. Prog. Phys. 43 (1980) 1145; M. Caffo and H. Czyz, Comput. Phys. Commun., 100:99–118, 1997):

 Jacobian transformations of the two variables, the photon polar angle and the photon energy have been performed

Real photon emission- MC event generator

δ	$E_{\rm max}^{\gamma} = 0.1\sqrt{s} / 2$			$E_{\rm max}^{\gamma} = 0.3\sqrt{s} / 2$		
θ (degree)	Virtual	Real	Virtual+Real	Virtual	Real	Virtual+Real
30	-0.37606	0.31166	-0.06440	-0.37606	0.37066	-0.00540
90	-0.48275	0.39084	-0.09192	-0.48275	0.46010	-0.02265
150	-0.58893	0.28229	-0.11038	-0.58893	0.54895	-0.03998

Analyses of electromagnetic processes

Signal	Physics	Status
$\overline{p}p \rightarrow e^+ e^-$	FFs	Completed and published (P3) publication in progress (P1, 2)
$\overline{p}p \rightarrow \mu^+ \mu^-$	FFs	Completed, publications in progress
$\overline{p}p \rightarrow e^+ e^- \pi^0$	FFs below threshold	Analysis ongoing
$\boxed{\begin{array}{c} \overline{p}p \rightarrow \gamma^* \pi^0 \\ \overline{p}p \rightarrow J / \psi \pi^0 \end{array}}$	TDAs	Completed and published (P3)
$\overline{p}p \rightarrow \gamma\gamma$ $\overline{p}p \rightarrow \pi^0\gamma$	GDAs	
$\overline{p}p \to \mu^+ \mu^- X$ $\overline{p}p \to e^+ e^- X$	TMD PDFs	Analysis ongoing