

$\bar{\mathrm{P}}\text{ANDA}$ Collaboration Meeting - EMP Session

Measurement of the Neutron Form Factors via $e^+e^- \rightarrow \bar{n}n$ at BESIII

Paul Larin, Samer Ahmed, Xiaorong Zhou and Jifeng Hu on behalf of the BESIII Collaboration

11. November 2019

Neutron Form Factors at BESIII 0 / 30

Outline

- Electromagnetic Form Factors of the Nucleon at BESIII
- \blacksquare Data Analysis: $e^+e^- \rightarrow \bar{n}n$ at $\sqrt{s}=2.0-3.08~{\rm GeV}$
- Results from the BESIII Experiment and Discussion

Electromagnetic Form Factors of the Nucleon

Nucleon Electromagnetic Form Factors (EMFFs)

- EMFFs parametrize the internal structure and dynamics of the nucleon
- Can be measured in space-like (SL) or time-like (TL) region
- The hadronic vector current J^{μ} for spin- $\frac{1}{2}$ particles contains **2 form factors**:

$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2(q^2)$$

Properties of the TL EMFF of the Nucleon

$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + rac{i\sigma^{\mu
u} q_{
u}}{2M_N} F_2(q^2)$$

- **•** $F_1(q^2)$ and $F_2(q^2)$ are the Dirac- and Pauli FF, functions of q^2 .
- EMFFs are analytical functions: For high q^2 pQCD and asymptotic behavior:

$$m{F_1(q^2)} \propto rac{1}{q^4} \qquad \qquad m{F_2(q^2)} \propto rac{1}{q^6}$$

Experimental access: Sachs FFs \rightarrow linear combination of $F_1(q^2)$ and $F_2(q^2)$:

$$G_{E}(q^{2}) = F_{1}(q^{2}) + \tau F_{2}(q^{2}), \qquad G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2}), \qquad au = rac{q^{2}}{4m_{N}^{2}}$$

- Properties of EMFF of the nucleon with respect to q^2 :
 - At threshold $(q^2 = 4m_N^2)$: by definition $G_E = G_M$
 - At $q^2 = 0$ for Proton: $F_1 = F_2 = 1$, $G_E = 1$, $G_M = \mu_P$
 - At $q^2 = 0$ for Neutron: $F_1 = 0$, $F_2 = 1$, $G_E = 0$, $G_M = \mu_n$

Measurement of Nucleon EMFFs in the TL Region

and

Two methods: Direct Scan

 $\mathsf{s}=\mathsf{q}^2$

Radiative Return

$$s' = q^2$$

- $s'=x \cong 2E_{\gamma}/\sqrt{s}$
- Beam energy is fixed.
 - Luminosity is relatively high.

$$\begin{split} & \left(\frac{d^2\sigma_{N\bar{N}\gamma}}{dq^2d\theta}\right) = \frac{1}{q^2}W(q^2, x, \theta_\gamma)\sigma_{N\bar{N}}(q^2) \\ & W(q^2, x, \theta_\gamma) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2\theta_\gamma} - \frac{x^2}{2}\right) \end{split}$$

 $\bullet~q^2$ is continuous from threshold to s.

- Beam energy is discrete.
- Luminosity is relatively small.

$$igg(rac{d\sigma_{Nar{N}}}{d\Omega}igg) = rac{lpha^2 Ceta}{4q^2} \Big[|G_M^N|^2 (1+cos^2 heta)
onumber \ + rac{1}{ au} |G_E^N|^2 (1-cos^2 heta)
onumber \ + rac{1}{ au} |G_E^N|^2 \ + rac{1}{ au} \ + rac{1}{ au} |G_E^N|^2 \ + rac{1}{ au} \ + rac{1}{ au} |G_E^N|^2 \ + rac{1}{ au} \ + rac{1}{ au} \ + rac{1}{ au} |G_E^N|^2 \ + rac{1}{ au} \ + rac$$

• q² is single at each beam energy.

Observables of the EMFF in the TL Region

Integrated measurement (if statistics are low):

Born cross section (one photon approximation):

$$\begin{split} \sigma_B^{e^+e^- \to \bar{N}N} &= \frac{4\pi\alpha^2\beta\mathcal{C}}{3q^2} \left[|G_M^N|^2 + \frac{1}{2\tau} |G_E^N| \right] = \frac{N_{data}}{\mathcal{E}_{MC} \times \mathcal{E}_{corr} \times \mathcal{L}_{int} \times (1+\delta)} \\ \beta &= \sqrt{1 - 1/\tau}, \qquad \mathcal{C} = \frac{\pi\alpha}{\beta(1 - e^{\pi\alpha/\beta})} \text{ (if neutral } \to \mathcal{C} = 1) \\ \text{Effective form factor:} \qquad |G_{eff}^N| &= \sqrt{\frac{\sigma_B^{e^+e^-} \to \bar{N}N}{(1 + \frac{1}{2\tau})\left(\frac{4\pi\alpha^2\beta\mathcal{C}}{3q^2}\right)}} \end{split}$$

Disentangled measurement (if statistics are high enough for angular analysis):

• Separation of $|G_E^N|$ and $|G_M^N|$ via angular analysis (of $e^+e^- \rightarrow \bar{N}N$):

$$\frac{d\sigma_B^{e^+e^- \to \bar{N}N}}{d\Omega_{cm}} = \frac{\alpha^2 \beta \mathcal{C}}{4q^2} \left[(1 + \cos^2 \theta_{N(\bar{N})}^{cm}) |G_M^N|^2 + \frac{1}{\tau} |G_E^N|^2 \sin^2 \theta_{N(\bar{N})}^{cm} \right]$$

Status of the EMFF Measurement in the TL Region

Proton: rich data

√s (GeV)

(GeV)

(GeV)

The BESIII Experiment at the BEPCII Collider

Physics and Data Sets at the BESIII Experiment

Motivation

Why measuring the TL electromagnetic form factors of the neutron?

- TL EMFF required for the complete understanding of the nucleon structure
- The available results on the effective FF show a poor precision, limited range
- Published results from FENICE experiment show unexpected behavior: → photon-neutron coupling stronger than photon-proton coupling?
- Many theoretical predictions and parametrizations of EMFF of the nucleon: → which model describes the nucleon structure in a most precise way?
- pQCD predicts an asymptotic behavior between SL and TL FFs: → at which q² can we observe this behavior?
- Periodic structure observed by the BaBar experiment for proton EFF results: → is there a similar structure in the effective FF of the neutron?

Data Analysis

Available Data and Monte Carlo Samples

Collider data:

•	Collision	data	sets a	t 18	center-of-mass	energies	(total	luminosity	~ 651	pb ⁻¹	·):
---	-----------	------	--------	------	----------------	----------	--------	------------	------------	------------------	-----

\sqrt{s} (GeV)	$\mathcal{L}_{int} (pb^{-1})$	\sqrt{s} (GeV)	$\mathcal{L}_{int} (pb^{-1})$
2.0000	$10.074 \pm 0.005 \pm 0.067$	2.3864	$22.549 \pm 0.010 \pm 0.176$
2.0500	$3.344 \pm 0.003 \pm 0.027$	2.3960	$66.869 \pm 0.017 \pm 0.475$
2.1000	$12.167 \pm 0.006 \pm 0.085$	2.6454	$67.725\pm0.018\pm0.249$
2.1266	$108.49 \pm 0.02 \pm 0.94$	2.9000	$105.253 \pm 0.025 \pm 0.905$
2.1500	$2.841 \pm 0.003 \pm 0.024$	2.9500	$15.942\pm0.010\pm0.142$
2.1750	$10.625\pm0.006\pm0.091$	2.9810	$16.071 \pm 0.010 \pm 0.095$
2.2000	$13.699 \pm 0.007 \pm 0.092$	3.0000	$15.881 \pm 0.010 \pm 0.110$
2.2324	$11.856 \pm 0.007 \pm 0.087$	3.0200	$17.290 \pm 0.011 \pm 0.123$
2.3094	$21.089 \pm 0.009 \pm 0.143$	3.0800	$126.185 \pm 0.029 \pm 0.921$

- Non-collision data sets: at 2.2324 and 2.6444 GeV for background studies
- Control channels: 1.3B J/ψ events for *n*, \bar{n} and γ efficiency studies

Monte Carlo simulation samples:

- Signal MC simulation with ConExc and Phokhara: 500k for each energy point
- Bhabha, di-gamma, di-muon with Babayaga 3.5 (NNLO) according to *L*_{data}
- Multi-hadronic final states with LundAreaLaw (NLO) according to L_{data}
- MC simulation samples for the control channels according to L_{data}

No charged tracks in event

- Most energetic shower in EMC as \bar{n} candidate ① Search for TOF1 signal with: $\Delta \Phi^1 = |\phi_{TOF}^1 - \phi_{EMC}| < 3 \text{ TOF's } (\sim 12^\circ)$ \rightarrow Search for TOF2 signal as *n* with $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{EMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$ \rightarrow further selection criteria: Category A
 - No TOF2? Search for second energetic shower as n with ⊲ⁿ_n > 90°
 - ightarrow further selection criteria: Category B
 - So TOF1? Search for second energetic shower as n with <ⁿ/_n > 90°

11. November 2019

- No charged tracks in event
- Most energetic shower in EMC as \bar{n} candidate

Search for TOF1 signal with: $\Delta \Phi^1 = |\phi^1|_{\phi^1} = \phi_{\text{succ}}|_{\phi^1} \leq 3 \text{ TOE's } (\phi^1)^2$

 $\label{eq:deltadef} \begin{array}{l} \rightarrow \mbox{ Search for TOF2 signal as } n \mbox{ with} \\ \Delta \Phi^2 = |\phi^2_{TOF} - \phi^{recoil}_{EMC}| < 6 \mbox{ TOF's } (\sim 25^\circ) \end{array}$

- \rightarrow further selection criteria: Category A
- 2 No TOF2? Search for second energetic shower as n with ⊲ⁿ_n > 90°
 - \rightarrow further selection criteria: Category B
- 3 No TOF1? Search for second energetic shower as n with ⊲ⁿ_n > 90°
 - \rightarrow further selection criteria: Category (

- No charged tracks in event
- Most energetic shower in EMC as n
 candidate

• Search for TOF1 signal with:

 $\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| <$ 3 TOF's (\sim 12°)

→ Search for TOF2 signal as *n* with $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{EMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$

 \rightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as n with ⊲^{n̄} > 90°

 \rightarrow further selection criteria: Category B

- **3** No TOF1? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$
 - \rightarrow further selection criteria: Category C

11. November 2019

- No charged tracks in event
- Most energetic shower in EMC as \bar{n} candidate

• Search for TOF1 signal with:

$$\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| <$$
 3 TOF's (\sim 12 $^\circ$)

 \rightarrow Search for TOF2 signal as *n* with $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{FMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$

ightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as n with ⊲ⁿ/_n > 90°

 \rightarrow further selection criteria: Category B

3 No TOF1? Search for second energetic shower as n with ⊲^{n̄}_n > 90°

 \rightarrow further selection criteria: Category C

- No charged tracks in event
- Most energetic shower in EMC as \bar{n} candidate

• Search for TOF1 signal with:

$$\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| <$$
 3 TOF's (\sim 12 $^\circ$)

 \rightarrow Search for TOF2 signal as *n* with $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{FMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$

 \rightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as n with ⊲ⁿ_n > 90°

ightarrow further selection criteria: Category B

3 No TOF1? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$

 \rightarrow further selection criteria: Category C

- No charged tracks in event
- Most energetic shower in EMC as n
 candidate

1 Search for TOF1 signal with:

 $\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| < 3 \; {
m TOF's} \; ({\sim}12^\circ)$

 \rightarrow Search for TOF2 signal as *n* with

 $\Delta \Phi^2 = |\phi^2_{TOF} - \phi^{recoil}_{EMC}| <$ 6 TOF's (~25°)

ightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$

ightarrow further selection criteria: Category B

3 No TOF1? Search for second energetic shower as n with ⊲ⁿ/_n > 90°

 \rightarrow further selection criteria: Category C

- No charged tracks in event
- Most energetic shower in EMC as n
 candidate

1 Search for TOF1 signal with:

 $\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| < 3 \; {
m TOF's} \; ({\sim}12^\circ)$

 \rightarrow Search for TOF2 signal as *n* with

 $\Delta \Phi^2 = |\phi^2_{TOF} - \phi^{ ext{recoil}}_{ ext{EMC}}| < 6 \; ext{TOF's} \; ({\sim}25^\circ)$

ightarrow further selection criteria: Category A

- 2 No TOF2? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$
 - \rightarrow further selection criteria: Category B
- 3 No TOF1? Search for second energetic shower as n with ⊲ⁿ_n > 90°
 - ightarrow further selection criteria: Category C

- No charged tracks in event
- Most energetic shower in EMC as n
 candidate

1 Search for TOF1 signal with:

 $\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| <$ 3 TOF's (\sim 12°)

 \rightarrow Search for TOF2 signal as *n* with

 $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{EMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$

ightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as n with ⊲ⁿ/_n > 90°

ightarrow further selection criteria: Category B

3 No TOF1? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$

ightarrow further selection criteria: Category C

- No charged tracks in event
- Most energetic shower in EMC as n
 candidate

1 Search for TOF1 signal with:

 $\Delta \Phi^1 = |\phi^1_{TOF} - \phi_{EMC}| < 3 \; {\sf TOF's} \; ({\sim}12^\circ)$

 \rightarrow Search for TOF2 signal as *n* with

 $\Delta \Phi^2 = |\phi_{TOF}^2 - \phi_{EMC}^{recoil}| < 6 \text{ TOF's } (\sim 25^\circ)$

ightarrow further selection criteria: Category A

2 No TOF2? Search for second energetic shower as n with ⊲ⁿ/_n > 90°

ightarrow further selection criteria: Category B

- **3** No TOF1? Search for second energetic shower as *n* with $\triangleleft_n^{\overline{n}} > 90^\circ$
 - \rightarrow further selection criteria: Category C

Analysis Strategy: Category A - $\bar{n}_{TOF} + n_{TOF}$

	Expression	Unit	Object	Notation
	$N_{charged} == 0$	-	\bar{n}, n	S _A 0
а	$0.3 < E_{\bar{n}} < 2.0$	GeV	ñ	S _A 1
Ь	$35 < N_{HIT}^{50} < 140$	-	n	$S_A 2$
	$ \cos \theta < 0.8 (\cos \theta < 0.7)$	radian	ñ	$S_A 3 (S_A 3')$
	$ \Delta \phi_{(TOF1,EMC1)} < 3 \phi_c$	radian	ñ	$S_A 4$
c	$\theta_{(TOF1,EMC1)} < 0.5$	radian	ñ	$S_A 5$
d	$0.5 < \Delta T_{\bar{n}} < 10 (\Delta T_{\bar{n}} < 10)$	ns	ñ	$S_{A}6(S_{A}6')$
	$ \Delta \phi_{(TOF2,EMC1')} < 6 \phi_c$	radian	п	S _A 7
	$ \Delta T_n < 4 (\Delta T_n < 0.5)$	ns	n	$S_A 8 (S_A 8')$
е	$E_n < 0.7 \ (0.06 < E_n < 0.7)$	GeV	n	$S_A9(S_A9')$
2	$\theta_{TOF2',EMC1} > 2.9 \ (\theta_{TOF2',EMC1} > 3.0)$	radian	n, \bar{n}	$S_A 10 \left(S_A 10' \right)$
4	$ \Delta T < 4.0$	ns	n, \bar{n}	S _A 11
	$\theta_{EMC2,EMC1} > 3.0$	radian	n, \bar{n}	S _A 12

Analysis Strategy: Category B - $\bar{n}_{TOF} + n_{EMC}$

	Expression	Unit	Object	Notation
	$N_{charged} == 0$	-	\bar{n}, n	$S_B 0$
а	$E_{\bar{n}} > 0.5$	GeV	ñ	$S_B 1$
	$T_{\bar{n}}$ valid	ns	n	$S_B 2$
b	$ \Delta T_{\bar{n}} > 0.5$	ns	n	$S_B 3$
с	$0.04 < E_n < 0.5 \; (0.06 < E_n < 0.5)$	GeV	п	$S_B 4$
	T_n not valid	ns	n	$S_B 5$
d	$ \cos\theta _n < 0.75$	-	n	$S_B 6$
e	BDT descriminator > 0.1	-	n, \bar{n}	S _B 7

Paul Larin

Analysis Strategy: Category C - $\bar{n}_{EMC} + n_{EMC}$

	Expression	Unit	Object	Notation
	$N_{charged} == 0$	-	\bar{n}, n	$S_C 0$
	$ \cos\theta _{\bar{n}} < 0.75$	-	ñ	$S_C 1$
а	$0.5 < E_{\bar{n}} < 2.0$	GeV	ñ	$S_C 2$
Ь	$2M_{\bar{n}} > 20$	cm ²	\bar{n}	$S_C 3$
С	$35 < N_{hits}^{50^{\circ}cone} < 100$	-	n	$S_C 4$
d	$0.04 < E_n < 0.6 \ (0.06 < E_n < 0.6)$	GeV	п	$S_C 5$
е	$E_{extra} < 0.15$	GeV	n, \bar{n}	S _C 6
f	$ll_{muc} < 6$	-	n, \bar{n}	S_C7
g	$<\frac{n}{n} > 150^{\circ}$	degree	n, \bar{n}	$S_C 8$

Paul Larin

Neutron Form Factors at BESIII 13/30

Determination of the Signal Yield via Fit

- We use a composite fit to determine the signal event yield from data
- The signal shape is modeled with the signal MC simulation
- The background shapes are modeled with MC simulation and non-collision data samples, the normalizations are set to the luminosity of the collider data

 $\mathcal{F}(q^2) = \sum_i \mathcal{N}_i^{s,b}(q^2) \cdot PDF_i(q^2),$ (*i* = signal, beam, hadronic, digamma)

Efficiency Corrections for Born Cross Section

Reminder: Reconstruction efficiency crucial for the Born cross section determination!

Corrections for the signal MC simulation reconstruction efficiency:

- $C_{n(\bar{n})}$, C_{muc} , C_{ee} , C_{BDT} : corrections due to data/MC differences
- C_{trg} : trigger efficiency correction (data/MC differences in deposition energy)

Application of Data/MC Efficiency Correction

Data/MC efficiency correction for the selection criteria of *n* and $\bar{n} C_{n(\bar{n})}$:

Trigger Efficiency Correction C_{trg}

■ **Category individual** trigger efficiency dependant on energy deposition in event *i*: based on the method from *N. Berger et al. Chin. Phys. C* 34 1779 (2010).

$$C_{trg} = \frac{\sum_{i=1}^{N} f(E_{total}^{i})}{N} \quad \text{with} \quad f(E_{total}^{i}) = 0.5 + 0.5 Erf\left(\frac{E_{total}^{i} - a}{b}\right)$$

■ Calculating trigger efficiency via e⁺e⁻ → pp̄ (based on BESIII e⁺e⁻ → p̄p): (is pre-requested trigger for charged tracks based on MDC signal)

$$\mathcal{E}_{trigger}(8, 11) = rac{N_{(sel, nshower \ge 2, trigger[8]=1||trigger[11]=1)}}{N_{(sel, nshower \ge 2)}}$$

- $a = 0.758 \pm 0.005$ and $b = 0.334 \pm 0.009$ are extracted from $e^+e^- \rightarrow p\bar{p}$ in scan data 2015 and validated with $e^+e^- \rightarrow$ hadronic inclusive and from RAW data
- **Remider**: can't rely on MC \rightarrow replace E^{i}_{total} in signal MC with $E^{i}_{total}(data)$ from control samples under the requirement $|\vec{p}^{i}_{MC} \vec{p}^{k}_{data}| < 0.1 \text{ (GeV/c)}$

Estimation of the Systematic Uncertainties

- The systematic uncertainty on the Born cross section σ_B and effective form factor $|G_{eff}|$ is studied independently for each category (A, B, C)
- The systematic uncertainty on the magnetic form factor $|G_M|$ and the form factor ratio $R_{em} = |G_E|/|G_M|$ is studied from the combined analysis

σ_B and $|G_{eff}|$

- Luminosity
- Individual selection
- Fit for the signal yield extraction (fit range, signal and background model)
- Trigger efficiency
- Radiative corrections
- Iterative MC tuning

$|G_M|$

- Differential selections
- Differential signal yield extraction (range, signal and background model)
- Luminosity
- Trigger efficiency
- Radiative corrections
- Iterative MC tuning

 $|R_{em}| = |G_E|/|G_M|$

- Differential selection
- Differential signal yield extraction (range, signal and background model)
- Bin width
- Angular fit range
- Radiative corrections

Discussion of the Results

Neutron Form Factors at BESIII 18/30

Results for the Born Cross Section: $\sigma_B(e^+e^- \rightarrow \bar{n}n)$

Results from three categories A, B, C consistent within 1 standard deviation: \rightarrow error weighted combination

- Unrivaled precision: best is achieved at $\sqrt{s} = 2.396$ GeV with 7.3%
- σ_B^{av} in agreement at $\sqrt{s} = 2.0$ GeV with FENICE and SND results
- σ_B^{av} in disagreement at $\sqrt{s} = 2.396$ GeV with FENICE results (~ 2σ)

Born Cross Section for $e^+e^- ightarrow \bar{n}n$ and $e^+e^- ightarrow \bar{p}p$

- Born cross section different below $\sqrt{s} = 2.4$ GeV, similar above
- Ratio of Born cross sections R_{np} shows a structure around $\sqrt{s} = 2.2 \text{ GeV}$
- **Predictions**: pQCD¹: $R_{np} < 1$, quark counting²: $R_{np} \sim |q_d/q_u|^2 \sim 0.25$
- Our results **do not support** the results from FENICE $(R_{np} \sim 2)$

Paul Larin

¹ J. Ellis, and M. Karliner, New J. Phys. 4, (2002) 18.

² V.L.Chernyak, I.R.Zhitnitsky, Nucl.Phys. B246 (1984) 52.

Results for the Effective Form Factor $|G_{eff}^n|$

- $|G_{eff}^n|$ similar to results for **A** and **\Sigma** below $\sqrt{s} M_{B\bar{B}} = 0.3$ GeV
- Similar to results for **proton** above $\sqrt{s} M_{B\bar{B}} = 0.3$ GeV
- Shows a plateau between $\sqrt{s} M_{B\bar{B}} = 0.3 0.6$ GeV

Periodic Structure¹ in the Effective FF $|G_{eff}|$

- Oscillation: Interference in final state rescattering¹? Resonant structure²?
- **Similar oscillation** of $|G_{eff}^n|$ observed, comparable to the proton results
- F_{osc} describes the neutron results well ($\chi^2/dof = 23.1/14$)
- **Simultaneous fit**: shared $C = 6.6 \pm 0.1 \text{ GeV}^{-1}$, $\Delta D = (235.5 \pm 10.8)^{\circ}$

1 A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. C 93, 035201, (2016).

2 I. T. Lorentz, H.-W. Hammer, and U.-G. Meiner, Phys. Rev. D 92, 034018 (2015).

Paul Larin

Results for the Magnetic Form Factor $|G_M^n|$

- First measurement of $|G_M^n|$ in the TL region above $\sqrt{s} = 2.0$ GeV
- Statistical precision: 9.5% and 7.1% at $\sqrt{s} = 2.127$ and 2.394 GeV
- Our results are in agreement with the DR Mainz model
- Results are in disagreement with other models^{1,2,3} (normalization?)

Paul Larin

Neutron Form Factors at BESIII 23/30

¹ Modified Dipole prediction: Phys. Lett. B 504 (2001)

² pQCD prediction: Phys. Rev. Lett. 79 (1997)

³ Modified Vector Meson Dominance model: Phys Rev. C 69 (2004)

Results for the Form Factor Ratio $R_{em}^n = |G_E^n|/|G_M^n|$

- First measurement of R_{em}^n in the TL region above $\sqrt{s} = 2.0 \text{ GeV}$
- Statistical precision: **35.7%** and **52.2%** at $\sqrt{s} = 2.127$ and 2.394 GeV
- Our results are in **agreement** with $R_{em} = 1$
- The uncertainty is dominated by the statistical precision

Nucleon Form Factors in the SL and TL Region

Reminder: pQCD predicts asymptotic behavior for SL and TL form factors¹

- Linear fit: Proton FFs SL = TL at $17.6 \pm 1.2 \text{ GeV}^2$
- Neutron FFs SL = TL at **28.7** \pm **13.9** GeV² (w/o data at ~ 7 GeV)
- The TL results for proton and neutron are larger than the SL results
- In future: Take the periodic structure into account?

1 S. D. Drell and F. Zachariasen, "Electromagnetic Structure of nucleons", Oxford University Press, (1961).

Summary

- BESIII provides excellent conditions to measure the nucleon FFs
- The SL electromagnetic structure of the nucleon $(G_{eff}, G_E, G_M, R_{em})$ has been measured in a wide energy range for $-10 > q^2 > 30$ GeV \rightarrow BESIII performed high precision measurements for proton and neutron in the TL region
- σ_B for $e^+e^- \rightarrow \bar{n}n$ has been measured for $\sqrt{s} = 2.0 3.08$ GeV
- The results on σ_B from BESIII show an unprecedented precision
- The Born cross section ratio $R_{np} < 1$ contradicts the FENICE results
- A periodic structure has been observed in the effective form factor $|G_{eff}^n|$
- The magnetic form factor $|G_M|$ and the electromagnetic form factor ratio $|R_{em}| = |G_E|/|G_M|$ of the neutron have been measured for the first time!
- A test for the asymptotic behavior of the FFs has been performed

THANK YOU!