

Calibration in KOALA

05.11.2019 | YONG ZHOU | IKP-FZJ

Mitglied der Helmholtz-Gemeinschaft

PANDA Collaboration Meeting, GSI

KOALA @ COSY

Elastic scattering event selection based on recoil energy and position

- Calibration
 - ADC -> Energy
 - TDC time offset
- Reconstruction
 - Background suppression
 - Efficient clustering

Forschungszentrum

DAQ

VME based DAQ

- ADC : recoil energy
- QDC : fwd energy
- TDC : recoil and forward time
- Synchronization clock:

VME internal clock (16 MHz)

Self-Triggering

- Each strip on recoil detector
- Each side on fwd detector

Trigger Logic

3

Common OR of all channels

Calibration : ADC to Energy

Challenge:

- Large dynamic range
 - Min : ~100 keV
 - Max: ~60 MeV
- Different gain settings

ADC : Si#1/strip#11

α -source (keV)

Pu-239	5156.59	5144.38
Cm-244	5804.83	5762.70
Am-241	5485.56	5442.80

Calibration : ADC To Energy

Solution:

- Two gain configurations:
 - Beam test (small)
 - Common (large)
- α source response at common setting
- Pulser to calibrate the gain difference between the two setting
- Deduce parameters for beam test gain setting

Energy vs Position

ICH gszentrum

Calibration: ADC to Energy

Difference between calibrated energy and calculated energy 0.2 0 **Alignment is needed!** -0.2 $\Delta E/MeV$ -0.4 $\Delta E = E_{Calibrated} - E_{Calcutlated}$ -0.6 -0.8 -1 20 40 60 80 100 120 140 160 180 200 220 240 0 Position / mm (along beam-axis) Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

Calibration : TDC Time Difference

Challenge:

- Time difference exists between channels (cable delay ...)
- Smearing the TOF-E spectrum

Time Difference With Correction

Solution:

- Get the time difference using pulser signal
- Normalize to one specific channel (e.g. Si1#1)

Summary:

- · Calibration of recoil detector energy is completed
- Correction of time offset of recoil detector is completed
- Alignment is needed to get more accurate result

Outlook:

- Develop an algorithm for recoil sensor alignment
- Energy reconstruction using clustering
- Cross-checking with simulation

THANK YOU !!

Mitglied der Helmholtz-Gemeinschaft

Forward Detector Performance

Forward Detector: Design

Distribution of the Correlated Scattering Proton in Fwd Detector Position @ 4.6m

- Scintillator: 90 x 20 x 6 mm³
- Position: z= +4.6 m and +4.8 m
- Polar angle (@4.6 m) : 0.4° < θ < 1.5°
- 8 modules in 4 symmetric pairs:
 - Beam position monitoring
 - Reduce random coincidence

Mitglied der Helmholtz-Gemeinschaft

25. June 2019

12

Time Resolution of Recoil Detector

Mitglied der Helmholtz-Gemeinschaft

13

JÜLICH Forschungszentrum