Update on the cooling system of the luminosity detector

Heinrich Leithoff

Helmholtz Institut Mainz

PANDA-Collaboration-Meeting Darmstadt November 5, 2019

Helmholtz Institute Mainz

Overview

- status of the cooling system
- result of cycle test

Half detector prototype

- production of halfplanes is finished
- Full half detector cooling test done
- Test in vacuum seems ok

Cooling system: General setup

	sensors	LDO Voltage	resistance in	Multiplexer
		regulator	flexcables	etc.
worst case	1040 W	320 W	160 W	${\sim}100{\rm W}$
likely case	380 W	120 W	20 W	${\sim}100{\rm W}$

- Total estimated heat load per half detector: $310\,W$ to $810\,W$
- Worst case: 7 mW mm^{-2} , likely case: 2.5 mW mm^{-2}
- For cooling test: copper dummys and high power resistors

H. Leithoff (HIM)

Cooling cycle test

Cooling cycle:

- Set bath temperature to $-20\,^{\circ}\text{C}$
- When $-20\,^\circ\text{C}$ is reached wait 10 min
- Switch on power supply and wait 15 min
- Switch off power supply and set bath temperature to 20 $^\circ\text{C}$
- When 20 $^\circ\text{C}$ is reached wait 10 min

 $>\!500\,$ cycles run with 340 W (14 W/module) $>\!500\,$ cycles with 465 W (19 W/module)

expected case: $10 \, W/module$

Cooling cycle result I

- No change in 500 cycles for $340 \, \text{W}$
- Placement of modules difficult du to stiff copper cabling and heavy weight
- Well-placed modules show acceptable temperature under realistic conditions

Cooling cycle result II

- Small changes after 500 cycles for 465 W
- Three copper dummies lost contact
- Well-placed modules still ok

Summary and outlook

- production of half planes finished
- half detector prototype successfully tested
- new design vacuum box produced, first tests successful

What is next:

- extended test of new vacuum box
- production of half detector prototype with sensors
- production of final detector

Contact loss during cycle test

Aluminum steel contact after cooling

after cutting:

after cooling to -40° C:

No gap between the materials, very good contact

Comparison of materials and processes

Test of the aluminum-diamond contact

- Setup with copper dummy
- Comparison of FEM results with measurements
- Test and comparison of several contact materials

FEM-simulation and measurement

- Simulated temperature difference $\sim 55^\circ C$
- Measured temperature difference (two Pt100): $50^{\circ}C$
- High radial temperature gradient (up to $2\frac{K}{mm}$)

Contact materials

H. Leithoff (HIM)

Contact materials 2

Upper limit for the material transition temperature rise:

Temperature Gradient

- Temperature gradient varies on the diamond
- High values near the cooling structure (> 1.5 $\frac{K}{mm}$)
- interesting measurements are in region with > 1 $\frac{K}{mm}$

Melting aluminum around stainless steel pipes

- Casting mould with stop off and cooling pipe
- The pipe can move in one direction to minimize internal stress

Casting mould after first melting process

- First test done under vacuum
- good results, but the vacuum furnace gets really dirty

Simulation

- No transition or radiative effects
- Inlet temperature $-20\,^\circ\text{C}$, pressure difference 1 bar
- diamond in nominal thickness
- maximum temperature:

```
worst case: \sim39 °C ecpected case: \sim0 °C
```

H. Leithoff (HIM)