MuPix8 Status and Reworking of DAQ

 PANDA Collaboration Meeting 2019/3 – Luminosity Detector Session

> René Hagdorn Ruhr-Universität Bochum

Darmstadt, November 5, 2019

Luminosity Detector (LMD)

- 11 m behind IP
- Measure tracks of elastically scattered anti-protons
- Anti-protons enter detector vacuum through transition cone
- 4 detector layers with HV-MAPS on both sides
- 10 sensor modules per layer
- Aluminum holding structure with embedded steel pipe for cooling (coolant: -20°C ethanol)
- Total number of sensors: 320
- Active area of one sensor: 2 × 2 cm²
- Pixel size: 80 × 80 µm²

The MuPix8 Chip

- Originally developped for Mu3e
- Physical size: 10.8 × 19.5 mm²
- Active area: ~ 10.2 × 16.2 mm²
- Matrix: 128 × 200 Pixels, three Submatrices MatA: source follower MatB/C: current mode
- Pixel: 80 × 81 µm²
- Charge sensitive amplifier in each pixel
- Two comparators in each periferal cell (timewalk compensation)
- 4 LVDS links (each submatrix + select/mux)
- Analog readout of Hitbus (ToT information) and amplifier output (for leftmost column only)

Planned Testbeam with several TRBs

- Testbeam September 2019 Idea: Use setup similar to final LMD readout scheme
 - Only one TRB as data concentrator / interface to DAQ PC
 - Use seperate TRB(s) as readout unit(s)
 - Optical connection
 - Syncronize via SODAnet \rightarrow DID NOT WORK OUT FOR SEPTEMBER TESTBEAM

Four-Layer MuPix8 Setup at COSY

- Testbeam in September 2019
- Four MuPix8 chips in beam (JESSICA hall)
- x-y-adjustable holding frames and positioning rail from HIM
 + height adjustable pedestal
- Goals: Readout of all submatrices (A,B,C) of four chips, test new control software based on EPICS for LV/HV and sensor configuration
- Old DAQ with only one TRBv3

First Run

- Hitmaps of first run (w/o MWPC)
- HV = 0 V, ThHigh = 600 mV for all layers
- Beam spot visible in all layers
- Sharp cut between Matrix A and B/C

Beam parameters: $p \lesssim 2.9 \text{ GeV/c}$ ~ 10⁶ protons / s

Hitmaps @ HV = 0 V and ThHigh = 600 mV

MuPix8 and DAQ

Alignment & Data Taking

- Inserted MWPC into beam to get wider spread
- Only used matrix A for alignment

Hitmaps with MWPC in beam HV = 50 V and ThHigh = 600 mV

November 5, 2019

Alignment & Data Taking

- Inserted MWPC into beam to get wider spread
- Only used matrix A for alignment

Column and Row Correlations for matrix A before alignment: DUT: HV = 50 V and ThHigh = 600 mV

René Hagdorn

MuPix8 and DAQ

November 5, 2019

Alignment & Data Taking

- Inserted MWPC into beam to get wider spread
- Only used matrix A for alignment
- For data taking: Keep tracking layers (L0, L2, L3) at HV = 50 V and ThHigh = 600 mV (100 mV above baseline)
- Vary DUT (L1): HV 10 V 50 V (10 V steps), ThHigh 550 mV – 650 mV (5 mV steps)
- Faster RO statemachine settings for MuPix (timerend = 0)
- No rate problems due to beam intensity (usually seen in row correlations)

Column and Row Correlations for all matrices after alignment: DUT: HV = 50 V and ThHigh = 600 mV

Differences in Submatrices

- Overall different response from matrix A and B/C (sharp cut)
- Smaller / different Threshold range to operate Matrices B/C
- No difference in response between B and C (at least at lower beam intensity)

DUT @ HV = 50 V and ThHigh = 550 mV, 600 mV, 650 mV

10

- Limitations of the TRBv3:
 - Current mupix firmware incompatible with SODAnet
 - black box / magic
 - Unsuitable for Lumi prototype (max. one Sensor per peripheral FPGA)
- Use new readout unit based on EMC Digitizer (designed by P. Marciniewski)
 - Uses Kintex7 FPGA
- Kintex7 Evaluation Board for first tests in Bochum and for Lumi prototype

Kintex7 Evaluation Kit by Xilinx

https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

First Steps with Kintex7

• MuPix Simulation:

. . .

- 1) Create 40MHz clk on one board and send it to second board
- 2) Create dummy data with fixed known datawords and send it back to first board at 400Mbit/s
- 3) Synchronize, de-serialize, and 8b/10b decode incoming data stream to recover dummy data
- n) Connect upto 8 MuPixes to one eval board using FMC adapter board
- Later: Use two Kintex7 boards for readout of Lumi prototype (16 MuPixes)
- Final detector: Upto 16 MuPixes per Pawelboard (two FPGAs on one board)
 - \rightarrow 20 boards needed for full LMD readout

Summary

- Testbeam at COSY with four layer telescope
 - Observed correlations in rows and columns _
 - New settings for MuPix8 RO state machine — \rightarrow higher rates w/o readout errors
 - All submatrices read out simultaneously differences in behaviors are seen
 - Efficiency studies, cluster analyses, etc. are WIP _
- New DAQ with Kintex7 FPGA
 - First evaluation kit purchased —
 - Planned MuPix data simulation with second board _
 - Read out Lumi prototype with two Kintex7 boards —

60

Matrix B of MuPix8 with PANDA Mask

80

100

Hitmap Layer1

МОК

40

20

0

20

40

120

Column

Botries

7000

6000

-5000

4000

3000

2000

1000

New Chips and Sensorbords in Bochum

- Different substrate resistivities (80 Ωcm and 200 Ωcm)
- New Sensorboards with adjustable VDD (1.9 V for more stable working point)
- PCB cutout \rightarrow ideal for usage in telescope setup

René Hagdorn

Timestamp Correlations

All 4 Layers synchronized

November 5, 2019

- Priority based readout of digital cells: Lower row addresses get read out first
- Physical rows 84 99 have highest digital addresses
- Hits get stuck in cells and are read out at a later cycle
 → pixels are insensitive to further hits during that time
- Current settings: ref_clock = 40 MHz and timerend = 3 → approx. max hit rate: 2.3 MHz
- For future: set timerend = 0
 → max. hit rate ≈ 9.2 MHz

Digital Row Address	Pixel Row	
0 – 55		
56 – 139	0 – 83	
140 – 239	100 – 199	
240 – 255	84 – 99	

Row addresses of digital cells (8 bit)

Analogue &	Digital DACs		Statemachine	& General DACs
BLResPix	5	-	VNDcl	c
VNPix	14		resetckdivend	f
VNFBPix	a		maxcycend	3f
VNFollPix	a		slowdownend	0
VNBiasPix	0		timerend	3
VPLoadPix	5		tenhace	0
VNOutPix	a		ckdivond2	7
VNPix2	0		ckdivond	,
BLResDig	5			0 2f
VPComp	5			0
VPDAC	0			0
VDel	а		VPFoll	a
	-	-	VNDACPix	0

Excerpt from chip config GUI. timerend sets a clock divider that reduces the speed of the readout FSM by (timerend + 1)

Matrices at High Rates

Row Layer0

TS Layer0

Timestamps Layer0 - Layer3

Hitmap Layer0

2

René Hagdorn

Timestamps Layer0 - Layer2

Row Layer0

TS Layer1

TS Layer0

18

MuPix8 and DAQ

180 20 Row Layer 1

TS Layer1

Timestamps Layer1 - Layer3

541.8

Crosstalk

- Row dependence of crosstalk in Matrix A
- Using analog amplifier readout

 Injected pixel (blue) and neighboring pixels (red/green)

René Hagdorn

MuPix8 and DAQ

November 5, 2019

Recap: Last November

- Cluster analysis of testbeam data (MAMI october 2018)
- Different cluster sizes show different distributions
- Multi clusters (three or more pixels) show pattern related to crosstalk

René Hagdorn