

MVD Session at GSI - ZEA-1 Status

05. NOVEMBER 2019 I

D. GRUNWALD, E. ROSENTHAL, B. ROTTLAND, R. SCHMITZ, <u>H. SCHNEIDER</u>, S. SCHOENEN | ZEA-1

F. BECKER | IKV-AACHEN

The PANDA detector (start/full setup)

Quelle: https://panda.gsi.de/system/files/user_uploads/dbeyssi%40ipno.in2p3.fr/TA-CON-2017-057_0.pdf

AT PANDA 20180130 Kick-Off PANDA

ZEA-1 M. Schmitt R. Schmitz H. Schneider

5

PANDA PROTOTYPE MVD

Prototype MVD half-shell with flange and stave layers BL3 und BL4

Remark:

The combination half-shell and aluminium flange, as shown in the CATIA-model right, is going to be substituted by a part manufactured of carbon fibre reinforced plastic (CFRP) completely.

Presently IKV Aachen provides the form for that component.

FEM already calculates with this model.

D:\Work\d.grunwald\062-001688.CATProduct - 14.09.2018 13:35:55

Source: "19_08_13_Laminiervorrichtung Versionen" from Fabian Becker, IKV-Aachen

PROTOTYPE MVD

Calculation Model

Calculation Model Boundary conditions Laminate Layup Gravity g=9,81 m/s² Rib (CFRP sandwich) core: Rohacell 51, t = 2 mm Skins: 0.23 mm ±45° cfrp prepereg, 50% FVG, 200g/m² Flange (CFRP) Ribs["] (CFRP) Cylindrical half shell t ≈ 2.5 mm t = 4 mm(CFRP sandwich) quasiisotrop layup quasiisotrop layup core: Rohacell 51, t = 2 mm distributed mass of staves fixed support at mounting Skins: 0.23 mm ±45° cfrp (red) points => means, that is the best case. prepereg, 50% FVG, 200g/m² $u_x = u_y = u_z = 0$

FEM-analysis of the half-shell with flange

Source: "062-PPT-20190829-SSchoenen-Stiffness_cylindrical_half_shell_CFRP_Flange_V1.0 " from Stephan Schoenen, ZEA-1

PANDA PROTOTYPE MVD

FEM-analysis of the half-shell with flange

Results

Investigation of simple improvements

CFRP & Rohacell with Al-Inlays	
--------------------------------	--

Results

Current design - displacements

vertical displacement max. absolute value: uy=-0.84 mm

								2	
	Skin		Core		Displacements			Mass	
Modification	Layup	Thickness	Material	Thickness	vertical	relative	lateral	ing	
	-45/45	0.23	Rohacell	2	-0.84	100%	+/-0.69	188	
reference	0/90	0.23	Rohacell	2	-1.18	140%	+/-0.95	188	
	0/90-45/45	0.23	Rohacell	2	-1.1	131%	+/-0.9	188	
double thiskness of conducish skin	-45/45	0.46	Rohacell	2	-0.55	65%	+/-0.45	274	
double thickness of sandwich skin	0/90/-45/45	0.46	Rohacell	2	-0.65	77%	+/-0.54	274	
double thickness of sandwich core and skin	-45/45	0.46	Rohacell	4	-0.19	23%	+/-0.15	317	
3x thickness of sandwich core and 2x of skin	-45/45	0.46	Rohacell	6	-0.11	13%	$+/_{-0.07}$	354	

lateral displacement max. absolute value: u_x=0.69 mm

Source: "062-PPT-20190829-SSchoenen-Stiffness_cylindrical_half_shell_CFRP_Flange_V1.0 "from Stephan Schoenen, ZEA-1

Staves BL4 number 1 to 6 are manufactured at IKV-Aachen

PROTOTYPE MVD

05.11.2019 PANDA MVD Session at GSI - ZEA-1 Status

Staves BL4 number 1 to 6 are measured at IKV-Aachen

Forschungszentrum

05.11.2019 PANDA MVD Session at GSI - ZEA-1 Status

05.11.2019 PANDA MVD Session at GSI - ZEA-1 Status

Presently under construction is the ZEA-1 measurement device for staves BL3 und BL4

PANDA

Info from "Thermal performance of carbon foams used as heat sink for the pixel MVD PANDA" with the www-link: "<u>https://iopscience.iop.org/article/10.1088/1748-0221/6/12/C12015"</u>

This study has been performed with

neutrons taking into account the "foreseen" fluence in PANDA, 1x10e14 n [1MeVeq/cm2] for ten years of data taking, 50% duty cycle, with **antiproton-proton annihilations** at 15 GeV/c beam momentum (5x10e14 n [1MeVeq/cm2] for ten years of data taking, 50% duty cycle, with **antiproton-Xe annihilations** at 15 GeV/c beam momentum).

Specimens with a **15 mm x 50 mm area and 5 mm thick** of the two carbon foam.

Some probes are exposed to radiation in the cyclotron at IKP-1 in Forschungszentrum Jülich presently

PANDA PROTOTYPE MVD

Autoclave ordered for the manufacturing/production of CFRP components at ZEA-1

Dimensions

Ove	erall	Telescopic slide-out			
Length:	1500 mm	1000 mm			
Width:	1400 mm	600 mm			
Height:	1400 mm	30 mm (space 450 mm)			

Masses

empty:1450 kgLoad:200 kg (Telescopic slide-out)

Date of delivery: week 51 in 2019

Siegfried Kempe GmbH : Enriemat ® • Kemflex Apparate- und Maschinenbau • D-74193 Schwaigern / Württ.								₽)	
ŀ	(unde:			Datum	Name	Benennung			Revision
Γ	/orlage:		bearbeitet:	29.07.2019	Ribeiro	Autoklav DN900 PN15			0
V	er. Änderung	Datum	geprüft			Mit Segmentverschluss			
0	1		normgepr.:			P265GH			
0	2		Blattgröße:	Maßstab:	1:7	Zeichnung-Nr.:	He	rstelljahr / Herstell-Nr.:	Blatt / von
0	3		A1	Datei: 10007-Zu:	sammenbau	B-0900-015	-201/1 2	019 / 10007	1/1

Conclusions and plans for 2020

PROTOTYPE MVD

Conclusions

- 6 Staves BL4 are ready for the final machining (cut-outs for the sensor-plates, drilling of the holes for fixing the staves)
- The measurements on the four Y-lines at each stave show displacements in a Range from -0.35 mm to +0.30 mm.
 - => Concerning construction and measurement methods some questions are still open
 - => Nevertheless, these parts are useable for further processing
 - => BUT, the reproducibility has to be improved !

Plans for 2020

- Examination and reporting of the properties of the probes (foams, o-rings, CFRP) which have been exposed to radiation in the cyclotron at IKP-1 in the Forschungszentrum Jülich
- At ZEA-1 building-up and commissioning of the hardware for the construction of CFRP components
- Establishing of the manufacturing of staves at IKV-AC and at ZEA-1
- Measuring of the existing 6 staves BL4 at ZEA-1 BEFORE final machining
- Final machining of the 6 staves BL4 at ZEA-1
- Measuring of the 6 staves BL4 at ZEA-1 AFTER final machining
- Construction of a prototype "half-shell with flange and stave layers BL3 and BL4" out of CFRP at IKV-Aachen
- Testing of the properties of this prototype with thermal load
 - => Ask for information about the electronic-parts (chips) on the staves, means: Definition of size and power dissipation

PANDA PROTOTYPE VACCUM

Vacuum system PANDA

Prototype bayonet joint with interface steel – o-ring – titan For the o-ring two materials are in the test: NBR (Acrylnitril-Butadien Kautschuk or Perbunan N) EPDM Schwefel 70 (ethylen-propylen-copolymer with sulfur cross-link)

PROTOTYPE VACCUM

Pre-prototype titan-pipe 20-cone-40withlengthdiameterwall in mm:Pipe211200.20Cone3620-400.431/3 Pipe297400.45

Pre-prototype titan-pipe 20-cone-40 Parts before final welding

PROTOTYPE VACCUM

Pre-prototype titan-pipe 20-cone-40							
with	length	diameter	wall in mm:				
Pipe	211	20	0.20				
Cone	36	20-40	0.43				
1/3 Pi	pe 297	40	0.45				

Pre-prototype titan-pipe 20-cone-40 Measurement results

Wall-thickness of the pipes 0.2 mm Pipes are measured at 4 different circumferences with 4 points each pipe 1: 0.214 mm +0.011 mm -0.014 mm pipe 2: 0.213 mm +0.007 mm -0.013 mm

Wall-thickness of the cones 0.43 mm cones are measured at 20th and 40th circumferences with 4 points each cone 1 and 2: at 20er 0,41 mm at 40er 0,45 mm

Wall-thickness of the pipes 0.45 mm Pipes are measured at 4 different circumferences with 4 points each pipe 1: 0.465 mm +0.045 mm -0.060 mm pipe 2: 0.449 mm +0.021 mm -0.021 mm pipe 3: 0.445 mm +0.030 mm -0.030 mm pipe 4: 0.459 mm +0.031 mm -0.029 mm pipe 5: 0.454 mm +0.046 mm -0.054 mm

pipe 6: 0.440 mm +0.045 mm -0.030 mm

PROTOTYPE VACCUM

Pre-prototype titan-pipe 20-cone-40withlengthdiameterwall in mm:Pipe211200.20Cone3620-400.43Pipe891400.45

Pre-prototype titan-pipe 20-cone-40 Final welding is done Length 1138 mm

GEM flange with diameter (79 mm) adapted to the GEM detector and with two half-shells for the bolting

GEM flange with RF grid and bellow

Prototype of the GEM flange with diameter (79 mm)

PROTOTYPE VACCUM

PANDA

Conclusions and plans for 2020

PROTOTYPE VACCUM

Conclusions

- The construction of the 3 prototypes (titan pipes with wall thickness from 0.2 to 0.45 mm, target-BL with bayonet and GEM-flange) is finished
- The VAT-valve DN200 for the LUMI-detector is ordered
- For the adapter/interface of the bayonet in the central space frame (CSF) a **vertical AND horizontal form fit** is strongly recommended

Plans for 2020

- Measuring of the geometry of the 2 pre-prototypes titan pipes after the welding-process
- Vacuum testing with all prototypes and reporting of the results (titan pipes, GEM-flange, target-BL with bayonet)
- Construction of the target-cross with wall thickness of 0.2 mm
- Designing of a mounting and transport frame for the complete prototype PANDA vacuum chamber (length ca. 6000 mm)

