Track Finding

 Usinga Neural Language Model

Jakapat Kannika
Forschungszentrum Jülich

How to find a track from continuous hits in the presence of noise?

Language Models

Example: Next word prediction

"l am Sam"
"Sam I am"
"I do not like green eggs and ham"

[2] http://qocall.com

Unigram Model

Word	Count
<s>	3
I	3
am	2
</s>	3
Sam	2
do	1

Word	Count
not	1
like	1
green	1
eggs	1
and	1
ham	1

Frequency distribution for a unigram model

```
<s> I: 1 I am: 2
    <s> 1 am Sam </s>
    <s> Sam lam </s>
    <s> I do not like green eggs and ham </s>
```


Bigram Model

Word	Count
<s> I	2
I am	2
am Sam	1
Sam </s>	1
<s> Sam	1
Sam I	1
am </s>	1
I do	1

Word	Count
do not	1
not like	1
like green	1
green eggs	1
eggs and	1
and ham	1
Ham </s>	1

Frequency distribution for a bigram model.

Finding a probability distribution of the bigram model

Word	Prob.
$P(\mathrm{I} \mid<\mathrm{s}>)$	$2 / 3=0.67$
$P(\mathrm{am} \mid \mathrm{I})$	$2 / 3=0.67$
$P($ Sam \mid am $)$	$1 / 2=0.5$
$P(</ \mathrm{s}>\mid$ Sam $)$	$1 / 2=0.5$
$P($ Sam \| <s>)	$1 / 3=0.33$
$P(\mathrm{I} \mid$ Sam $)$	$1 / 2=0.5$
$P(</ \mathrm{s}>\mid a m)$	$1 / 2=0.5$
$P($ do $\mid \mathrm{I})$	$1 / 3=0.33$

Word	Prob.
P (not \| do)	$1 / 1=1$
P (like \| not)	$1 / 1=1$
P (green \| like)	$1 / 1=1$
P (eggs \| green)	$1 / 1=1$
P (and \| eggs)	$1 / 1=1$
P (ham \| and)	$1 / 1=1$
$P(</$ s $>\mid$ Ham $)$	$1 / 1=1$

What is the next word after 'l'?

<s 1 am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Word	Prob.
$P(a m \mid I)$	0.67
$P($ do \mid I)	0.33

How can we apply the language models to the track finding task?

Neighbor Pattern Feature

Neighbor pattern tokens:
3266366636663666362

Moving Direction Feature

Moving direction tokens:
904590459045904590

GREEN: correct predicted hit, RED: incorrect predicted hit, BLUE: missed correct hit.

Neural Language Model

Neural language model: testing

Neural language model: training

SrC: https://burakhimmetoglu.com/2016/12/1 6/deciphering-the-neural-language-model/

The network architecture for the neural language model
vocabs = ["た " "
" ㅇㅇㅇ $"=[1,0,0,0,0]$
"(:)" $=[0,1,0,0,0]$
"昷) " $=[0,0,1,0,0$]

$$
\text { "loves" }=[0,0,0,1,0]
$$

$$
\text { "hates" }=[0,0,0,0,1]
$$

srC: https://burakhimmetoglu.com/2016/12/1 6/deciphering-the-neural-language-model/

"hates": 0.00

What is the difference between the conventional language model and the neural language model?

Curse of Dimensionality

$$
\begin{gathered}
\text { vocabs }=[a, \ldots, Z, A, \ldots, Z] \\
\text { len(vocabs) } 52
\end{gathered}
$$

2-gram model
max_len(prob_dist) $=\operatorname{len}(\text { vocabs)})^{\wedge} 2$
2,704
3-gram model
max_len(prob_dist) $=\operatorname{len}(\text { vocabs) })^{\wedge} 3$
140,608

4-gram model
max_len(prob_dist) $=\operatorname{len}($ vocabs)^4
7,311,616
10-gram model
max_len(prob_dist) $=\operatorname{len}(\text { vocabs })^{\wedge} 10$
144,555,105,949,057,024

"...A neural network language model is a language model based on Neural Networks, exploiting their ability to learn distributed representations to reduce the impact of the curse of dimensionality..."

- Yoshua Bengio (2008), Scholarpedia, 3(1):3881.

Multiple N-gram Trainings

Conventional language model

2-gram		3-gram		4-gram	
seq	prob	seq	prob	seq	prob
...
...
	
			

Neural language model

Moving direction:

["0" "0" " 0 " " 45 " " 0 " " 0 " " 90 "]

Moving direction:

["0" "0" "0" "45" "0" "0" "90"]

2gram

inputs	outputs
$" 0 "$	$" 0 "$
$" 0 "$	$" 0 "$
$" 0 "$	$" 45 "$
$" 45 "$	$" 0 "$
$" 0 "$	$" 0 "$
$" 0 "$	$" 90 "$

3 gram

inputs	outputs
$" 0 ", " 0 "$	$" 0 "$
$" 0 ", ~ " 0 "$	$" 45 "$
$" 0 ", " 45 "$	$" 0 "$
$" 45 ", " 0 "$	$" 0 "$
$" 0 ", " 0 "$	$" 90 "$

4gram

inputs	outputs
$" 0 ", " 0 ", " 0 "$	$" 45 "$
$" 0 ", " 0 ", " 45 "$	$" 0 "$
$" 0 ", " 45 ", " 0 "$	$" 0 "$
$" 45 ", " 0 ", " 0 "$	$" 90 "$

Training the neural network with variable length sequences

Moving direction:

["0" "0" "0" "45" "0" "0" "90"]

2gram

inputs	outputs
$" 0 "$	$" 0 "$
$" 0 "$	$" 0 "$
$" 0 "$	$" 45 "$
$" 45 "$	$" 0 "$
$" 0 "$	$" 0 "$
$" 0 "$	$" 90 "$

3 gram

inputs	outputs
$" 0 ", " 0 "$	$" 0 "$
$" 0 ", ~ " 0 "$	$" 45 "$
$" 0 ", " 45 "$	$" 0 "$
$" 45 ", " 0 "$	$" 0 "$
$" 0 ", " 0 "$	$" 90 "$

4gram

inputs	outputs
$" 0 ", " 0 ", " 0 "$	$" 45 "$
$" 0 ", " 0 ", " 45 "$	$" 0 "$
$" 0 ", " 45 ", " 0 "$	$" 0 "$
$" 45 ", " 0 ", " 0 "$	$" 90 "$

Moving direction:

["0" "0" "0" "45" "0" "0" "90"]

2gram

inputs	outputs
$0,0, " 0 "$	$" 0 "$
$0,0, " 0 "$	$" 0 "$
$0,0, " 0 "$	$" 45 "$
$0,0, " 45 "$	$" 0 "$
$0,0, " 0 "$	$" 0 "$
$0,0, " 0 "$	$" 90 "$

4gram

inputs	outputs
$" 0 ", " 0 ", " 0 "$	$" 45 "$
$" 0 ", " 0 ", " 45 "$	$" 0 "$
$" 0 ", " 45 ", " 0 "$	$" 0 "$
$" 45 ", " 0 ", " 0 "$	$" 90 "$

Current works

Neighbor pattern feature:

- 2-gram,
- 1-skip-bigram,
- 2-skip-bigram.

Moving direction feature:

- 5-gram,
- 10-gram,
- 15-gram.

Summary

- The neural language model can use less space in the memory than the conventional language model especially in the higher ngram models,
- The neural language model can be as accurate as the conventional language model,
- The neural language model can recognize multiple language models in a single network.

