## UPDATE TO THE APOLLONIUS HOUGH TRACK FINDER

05.11.2019 I ANNA SCHOLL

## INTRODUCTION

- Implement track finding algorithm for barrel part
- Use hits from MVD, STT, GEM detector
- Track passes through MVD and GEM hit points
- Track is tangent to STT isochrones


## HOW TO INCLUDE ISOCHRONE

 INFORMATION IN TRACKING ALGORITHMS?- Track is tangent to the isochrone
$\rightarrow$ First idea: Hough transformation
- Separate dimensions
- 3D helix $(\mathrm{R}, \varphi, \mathrm{z}) \rightarrow 2 \mathrm{D}$ circle $\left(\mathrm{R}, \varphi^{\varphi}\right)+\operatorname{line}(\mathrm{z})$
- Apply Hough transform to detect tracks in a set of hits
- For each hit, generate all possible tracks compatible with it (Circles in xy plane, passing through IP and are tangent to the isochrone)
- Collect generated track parameters for all hits (2D Hough Space)
- Count: most frequent values = parameters of actual tracks

JÜLICH

## HOW TO INCLUDE ISOCHRONE

 INFORMATION IN TRACKING ALGORITHMS?- Track is tangent to the isochrone
$\rightarrow$ First idea: Hough transformation
- Separate dimensions
- 3D helix $(\mathrm{R}, \varphi, \mathrm{z}) \rightarrow 2 \mathrm{D}$ circle $\left(\mathrm{R}, \varphi^{\varphi}\right)+$ line $(\mathrm{z})$
- Apply Hough transform to detect tracks in a set of hits
- Problem: a lot of false combinations for increasing number of tracks per event
- Idea: reduce combinatrics by using 2 Isochrones and IP


## $\rightarrow$ problem of Apollonius

## APOLLONIUS PROBLEM

- General Apollonius problem for 3 circles:

Find circles that are tangent to three given circles in a plane


## APOLLONIUS PROBLEM

- General Apollonius problem for 3 circles:

Find circles that are tangent to three given circles in a plane


For each circle there are 2 possibilities for an Apollonius circle

1. $r_{\text {Apollonius }}=$ $r_{\text {center }}+r_{i}$

## APOLLONIUS PROBLEM

- General Apollonius problem for 3 circles:

Find circles that are tangent to three given circles in a plane


For each circle there are 2 possibilities for an Apollonius circle

1. $r_{\text {Apollonius }}=$
$r_{\text {center }}+r_{i}$
2. $r_{\text {Apollonius }}=$
$r_{\text {center }}-r_{i}$

## APOLLONIUS PROBLEM

- General Apollonius problem for 3 circles:

Find circles that are tangent to three given circles in a plane


For each circle there are 2 possibilities for an Apollonius circle

1. $r_{\text {Apollonius }}=$ $r_{\text {center }}+r_{i}$
2. $r_{\text {Apollonius }}=$ $r_{\text {center }}-r_{i}$

In total $2^{3}=8$
Apollonius circles

## HOUGH TRANSFORMATION BASED ON THE APOLLONIUS PROBLEM

 Implemetation in PandaRoot and testing with simulated dataExample for one Track


- Works quiet well if track candidate is know (IdealTrackFinder)


## HOUGH TRANSFORMATION BASED ON THE APOLLONIUS PROBLEM

Implemetation in PandaRoot and testing with simulated data

Example for one Event


- Works quiet well if track candidate is known (IdealTrackFinder)
- For one event (many tracks): high combinatorics with (still) many false combinations


## PRESELECTION

- Using Apollonius transform for all tracks in one event is very time consuming and leads to a lot of false combinations
$\rightarrow$ preselection for possible tracklets is needed
- Idea:
- preselection by cellular automaton


## CELLULAR AUTOMATON

- Combine directly adjacent hits to tracklets


## CELLULAR AUTOMATON

- Combine directly adjacent hits to tracklets
- Problem: Tracks can be divided in several tracklets
$\rightarrow$ How to merge tracklets
$\rightarrow$ Find relevant parameters for merging

JÜLICH

## MERGING TRACKLETS

Compare two different parameters for merging:

1. intersection area fraction


## MERGING TRACKLETS

Compare two different parameters for merging:

1. intersection area fraction
2. middle line


- Define line perpendicular in the middle between two tracklets
- propagate both tracks to this line
- Calculate distance between both intersection points
- Calculate angular difference at the intersection points


## MERGING TRACKLETS

Only STT data


## TESTING ALGORITHM WITH MERGING

- Applying merging to the algorithm leads still to a high rate of not found tracks (42\% not found)
- Reason:
- after Cellular Automaton and merging tracklets still hits are not added to a track
- A track is divided in so many small tracklets that the track could not be found
- Searching for tracks in remaining hits
- leads to high combinatorics and many false combinations
- Again use a preselection
$\rightarrow$ dividing remaining hits in Segments and perform hough transformation to hits found with segmentation algorithm


## SEGMENTATION ALGORITHM



- Filling $\varphi$-values of all hits into a histogram:

- Divide in $\varphi$ - sectors
- Hough transformation for all hits in one sector


## RESULTS



## NEXT STEPS

- Speed up computing time (at the moment $\sim 0.5 \mathrm{~s} /$ /event) and enable GPU calculation
- Try to decrease ghost ratio and increase number of fully found tracks
- Insert z-direction

