
Automation of misaligned
Simulation and Alignment

November 2019 Panda Collaboration Meeting, Darmstadt

Roman Klasen | roklasen@uni-mainz.de

1

Motivation

For software alignment studies, hundreds of simulation scenarios must be run.

Each scenario must include MC Data generation (100-500 concurrent jobs), Luminosity Fit (10-100

concurrent jobs), actual software alignment (3 Jobs) and result reprocessing.

They have to be in order, be sorted by misalignment case and magnitude, and each for multiple beam

momenta.

Calling each substep by hand is simply out of the question.

Im building upon Stefan Pflügers Luminosity Fit Framework

(https://github.com/panda-luminosity-detector-group/LuminosityFit), which calls performs simulations

and Luminosity Fit for a single run scenario, and expand it to easily execute hundreds of scenarios.

2

https://github.com/panda-luminosity-detector-group/LuminosityFit

Reminder: Where to apply Misalignment

For misplaced Geometry:

- SimBox / SimDPM

- Digitization

- Reconstruction

Use this for realistic detector acceptances, but no

check for intersection components is available!

For misplaces Reconstructed Tracks:

- Reconstruction only, but use appropriate Flag

Use this is you need many different misaligned

scenarios, all can be done with a single MC data set.

Disadvantage: unrealistic detector acceptance.

3

Both use the same interface in FairRoot! Matrices are simple
std::map<TString, TGeoHMatrix> and can be either streamed to root files or simple JSON files.

How does our Misalignment Model work?

- Every component has a design position and a deviation from that design position

- Sub-components inherit this deviation, and have another deviation from their own design position

- Each box below represents a transformation matrix:

Note: intermediary matrices are optional / can be set to identity matrix! 4

cave_0 Main
component M1*

Sub-
component 1

Sub-
component 2

M2_1*

M2_2*

etc.

Alignment Type 1: Box Rotation Alignment

Survey gives very accurate measurements. But

even with 100µm accuracy (at two points of a

0.5m box), that’s 4mm offset in target position

(we’re 11 meters behind the target!)

Setup:

- rotate only Outer Box of Detector

- After track reconstruction and back

propagation, interaction point

(distribution) can be found

- Calculate look-at-matrix from apparent

target position to actual target position as

given by PANDA

- The result is the rotation of the detector

5

Alignment Type 2: Inter-Module Alignment

Four modules are in a row, and most tracks pass

through all of them.

Classic track based alignment that can find

relative (mis)alignment between planes, but not

average misalignment of all four planes.

Really, nothing new here.

6

Alignment Type 3: Sensor Aligmment

7

● 10 Sensors per module

● Overlapping areas between sensors

● Treat hits on the front and back sensors as

point clouds

● After filtering and selection, two clouds

with N elements remain

● Each point in cloud A corresponds to a point

in cloud B.

The more pairs, the more accurate the result!

Simulation Scenario

8

Generate
MC Data

DigiHits /
DigiNoise

RecoHits /
Reco Merge

Track
Finder / Fitter / Filter

Track
Back Propagator

Box Rotaion
Alignment

Module
Alignment

Sensor
Alignment

Alignment
Matrices

(apply only on
“real” data)

N
ex

t I
te

ra
tio

n

Misalignment
Matrices

Lumi Fit

Automating Simulations

So obviously, this entire process is extremely tedious. We have multiple macros that perform the

PandaROOT simulations, several other scripts for the Luminosity Fit and then several more for the

alignment procedures.

It would be great, if we could somehow automate this process:

- Specify scenario in runConfigs (more later)

- Add scripts that create default runConfigs

- Use “Watchdogs” for running jobs

- Automate calls of Luminosity Fit Framework

- Automate Alignment (must be done after all jobs are complete)

- Run simulations again with new alignment matrices

- Fit Luminosity again

9

Specify a scenario in a runConfig!

RunConfig: Json files that have all infos for a scenario. They are the lingua franca for all alignment

modules. They contain:

- Beam Momentum

- Number of Jobs/Events per Job

- Files for misalignment matrices

- Which kind of alignment to do (some must be done sequentially!)

- Misalignment parameters, tailored to our detector

- Where to store alignment files

- Various housekeeping

The sequential part is very important, because alignment must happen from innermost components to

outermost. Misaligned Modules will give wrong target positions, so Box Rotation alignment is impossible

before Module alignment has happened. Same goes for Sensor Alignment.

In future versions, the runConfig will contain this sequential order as well, for now, only a single type of

misalignment is supported. 10

LMD-Alignment GitHub Repository

Contains:

- Many debug/tests files

(will be removed)

- Two external git

submodules

- runSimulations.py (main

file)

- Pybind module to call

Millepede from python

- Subfolders for

implementation

11

https://github.com/panda-luminosity-detector-group/LMD-Alignment

https://github.com/panda-luminosity-detector-group/LMD-Alignment
https://github.com/panda-luminosity-detector-group/LMD-Alignment

runSimulations.py

Main script that accepts command line flags and calls all submodules

- Create default runConfigs (json can be edited by Hand)

- Run Simulation Chain up to track fitter

- Run all alignment Scripts

- Run Luminosity Fit Framework

- Extract Luminosity from LumiFit result file

And most importantly, all of the above in a single call (just specify runConfig file):

- Run Simulations with specified misalignment matrices

- Get Luminosity

- Perform Alignment

- Run Simulations again with found alignment matrices

- Get new Luminosity

And even for a complete set of runConfig files. With a single command, 100s of scenarios can be run! 12

detail/ and alignment/

detail/simWrapper.py:

- Gets runConfig from runSimulations

- Interacts with Luminosity Fit Framework

- Runs simulation chain

- Queries SLURM for running/pending jobs and waits if needed

- Calls different software Alignment modules

- And mostly housekeeping

And the Alignment subfolder for the alignment scripts!

- Each accepts a runConfig object

- Finds the appropriate source file (Reco Data, Fitted Tracks, back-propagated Tracks)

- Calculates the alignment matrices in a form that directly corresponds to the input misalignment

matrices

13

Example: Job Watchdog code

Minimum viable code

- After each submission of a job with qsub, a job (array) ID is returned.

- Query SLURM for running/pending jobs for user and job (array) ID:

- squeue -u $user --state=R -r -h -O $arrayjobid
- And simply count the resulting lines

- Run this every N Minutes

- (if you know a more elegant solution, please tell me)

This is done multiple times:

- After submission of simulation chain (mc, digi, reco, tracks)

- Then after LumiFit (which itself runs multiple simulations)

And again after software alignment

14

Case study:
Misaligned
Geometries

- We study all three misalignment

scenarios.

- Apply misalignments of three degrees

for each misalignment type

- Determine Luminosity without

alignment

- Perform Software Alignment

- Compare found Matrices with actual

Matrices

- Apply alignment Matrices onto “real”

Data (=Reco Hits, re-merge, find tracks

again etc)

- Determine Luminosity again

- For multiple beam momenta

In total these are 11 run scenarios (9

misaligned, one aligned, one “misaligned” with

identityu matrices for cross-checks), each with

10+ sub steps -> 110+ individual commands

Extremely tedious without proper automation! 15

Compare found matrices with actual

16

Ideal Geometry

Sensor
Data

Align
Matrices

Random
Matrices

Align QA

Pair Finder HitPairs
MC Data
MC Digi
MC Reco

Matrix Finder
ICP

PndLmdSensorAligner

ResidualsActual Geometry

Example for SensorAligner, others are similar

Lumi Fit

Optimizations for Box Rotation Alignment

17

Several scenarios, box is rotated around all three

axes, times a magnitude factor.

- Reconstructed and back-propagated tracks

are a hot mess

- Even after Momentum cuts and angular

cuts (in detector frame), many unrealistic

tracks survive

- To find them, plot the reconstructed target

position

Apply a quantile cut:

- Find clustering point reconstructed of

target position

- Sort all points by distance to this point

- Remove top p percent

Apply quantile cut (5%) onto target positions

18

What about rotation around the Z Axis?

In short: it doesn’t matter.

To find that out, I simulated several scenarios in

which the Box is rotated only about the Z axis, to

high degrees (10x larger than expected survey

error).

All results are without software alignment.

I could see no effect on the Luminosity Fit, all

results are well within the error of < 1 per mille

19

Factor Lumi Deviation [%]

1.0 0.035

2.0 -0.036

3.0 -0.053

5.0 -0.042

10.0 -0.058

Lumi Fit without and with Box Alignment

20

Example Reconstructed Target Position:

x= 5.1 mm

y= -4.0 mm

z= 0.0090 mm

Important observation: Luminosity Fit with

misalignment at 15 GeV is nigh impossible

Conclusion: Box Rotation Alignment should be
done at 1.5 GeV!

Mom
[GeV]

Factor corrected Lumi
Deviation [%]

1.5 1.0 no 6.44

1.5 1.0 yes 0.174

1.5 2.0 no 42.922

1.5 2.0 yes 1.126

15 0.5 no 114.219

15 0.5 yes 0.774

15 1.0 no 3 * 10^7

15 1.0 yes 2.42

Misaligned
Module
Geometry

21

Random values with gaussian distribution:

Name 𝛔 (translation) 𝛔 (rotation)

Factor 0.5 50µm 1 mrad

Factor 1.0 100µm 2 mrad

Factor 2.0 200µm 4 mrad

Module Alignment Result

22
Attention! Preliminary results! No Luminosity Fit results available at this time.

Misaligned
Sensor
Geometry

For all modules, we calculate the matrices

from one sensor the other sensor

23

Random values with gaussian distribution:

Name 𝛔 (translation) 𝛔 (rotation)

Factor 0.5 50µm 1.25 mrad

Factor 1.0 100µm 2.5 mrad

Factor 2.0 200µm 5 mrad

Sensor Alignment Prefilter

24

For two overlapping Sensors, the average distance

from top to bottom hit should directly correlate to

the misalignment of both of them!

That means, histogramming this distance should

result in a single peak, whose position is a direct

result of the misalignment.

To filter for good tracks, we only need to discard

everything that is not in this peak.

However, the reality looks different:

Pair Distance: Dynamic Cut, 1D and 2D

25

Sensor Alignment Results

26

Mom
[GeV]

Factor corrected Lumi
Deviation
[%]

1.5 1.0 no 3.02

1.5 1.0 yes -0.091

1.5 2.0 no -27.2

1.5 2.0 yes 0.004

15 1.0 no -48.632

15 1.0 yes -0.032

15 2.0 no 1173.616

15 2.0 yes -0.022

For 1.5 Gev, Factor 2.0 (large amount oz zeros is an artifact):

Interim Result: Individual Component Misalignment

We can align sets of components individually:

- The Box

- Modules

- Sensors

Similar to above, we can define a standard

misalignment after survey and call it 1.0. All

results are with software alignment.

Detailed values are subject to change, we’ll only

use shorthand notation here.

Observation: For Box Rotation alignment, use 1.5

GeV, for Module and Sensor Alignment use 15

GeV!

Component Factor Lumi Deviation
[%] @ 1.5GeV

Box 0.5 -0.037

Box 1.0 0.174

Box 2.0 1.126

Modules 0.5 No data

Modules 1.0 No data

Modules 2.0 No data

Sensors 0.5 -0.096

Sensors 1.0 -0.091

Sensors 2.0 0.004
27

Conclusion

- Software alignment is still work-in-progress

- Luminosity determination with misaligned geometry is difficult

- Determined Alignment Matrices drastically improve LumiFit Quality!

Roadmap:

- Mixing of misalignments
- Modularization for different experiments

28

Thank you for your attention!

29

