

MINISTERUL CERCETĂRII ȘI INOVĂRII

Toward the construction of the inner zone for the CBM-TOF wall

Mariana Petris

"Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest, Romania

Outline

Motivation – high counting rate, high multiplicity experiments,
 (e.g. CBM@FAIR, Darmstadt ->TOF inner wall)

SMGRPC with a high granularity and impedance matching to FEE

Performance in the in-beam tests in triggered and trigger-less mode operation

Towards the construction of the CBM-TOF inner zone: infrastructure and expertise

Conclusions and Outlook

Mapping the phase diagram with CBM

CBM aims to investigate strongly interacting matter in the region of high net baryon densities.

Investigation of:

- equation of state at high baryonic densities
- hadronic partonic phase transition and its type
- possible critical point predicted by QCD

SIS100 beam	Plab, max	$\sqrt{(s_{NN,max})}$
Heavy ions (Au)	11A GeV	4.7 GeV
Light ions (Z/A=0.5)	14A GeV	5.3 GeV
protons	29 GeV	7.5 GeV

Experiments exploring dense QCD matter

CBM experiment @ SIS100/FAIR

CBM will perform comprehensively high precision measurements of rarely produced observables. Multi-differential studies of rare probes (<1 particle per million events) require unprecedent statistics. Opens up new possibilities!

- Hadrons in dense baryonic matter and possible modification of their properties;
- Charm production at threshold beam energies and its properties in dense baryonic matter.

CBM Collaboration, Eur. Phys. J. A (2017) 53: 60

CBM: is a high rate experiment!

- Fast, radiation hard detectors and front-end electronics.
- Novel readout system:
 - Free-streaming readout,
 - detector hits with time stamps,
 - 4-D (space+time) event reconstruction.
- High speed data acquisition & performance computing farm for on-line event selection.

CBM – TOF requirements

CBM-ToF Requirements

- > Full system time resolution $\sigma_{_{\rm T}} \sim 80 \text{ ps}$
- Efficiency > 95%
- **Rate capability** \leq 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition

CBM Collaboration, "CBM – TOF Technical Desing Report", October 2014

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

Detectors with different rate capabilities are needed as a function of polar angle

Our R&D activity addresses the CBM-TOF inner wall:

- highest counting rate
- highest granularity
- ~15 m^2 active area

Double stack, strip readout, multigap, timing RPC concept - MSMGRPC

Method to adjust the signal transmission line impedance in MSMGRPCs Simulated signals 0.30

- The overlapped readout strips and the materials in between define a signal transmission line (STL)
- STL impedance depends on the readout strip width and the properties of the materials in between
- APLAC software used for impedance estimations

Air Honeycom b

Glass

Honeycomb

-HV

+HV

R

R = 198

V_{tran} (Output3)

V_{tran} (Output5)

- If $R = Z_0 = Z_1$ the transmission line is matched; Z_o = characteristic impedance of a transmission line Z₁ = load resistor connected to the transmission line
- **R** = internal resistance of the pulse generator

No significant signal loss occurs due to the narrow readout strip in comparison with the HV one

1n

Away side:

V_{tran} (Output2)

V_{tran} (Output4)

1.5n

2n

D. Bartos et al. Romanian Journal of Physics 63, 901 (2018)

RPC2015DS prototype - strip impedance tuned through the readout strip width

✓ Symmetric two stack structure: 2 x 5 gaps

- ✓ Active area 96 x 300 mm2
- ✓ Gas gap thickness: 140 µm thickness
- ✓ Readout electrode = 40 strips
- ✓ Differential readout
- ✓ Resistive electrodes: low resistivity glass

Goal – perfect matching of the impedance of the signal transmission line to the imput impedance of the FEE, in order to reduce the amount of fake information resulted from reflections.

> Simulations predicted ~99 Ω impedance for 1.3 mm readout and 5.6 mm high voltage strip widths

Readout electrode: 7.2 mm pitch= 1.3 mm width + 5.9 mm gap – define impedance High Voltage electrode: 7.2 mm pitch= 5.6 mm width + 1.6 mm gap – define granularity

In-beam test using a triggered DAQ

CERN-SPS Pb beam of 30A GeV on a Pb target

Free - streaming readout

CBM-TOF setup: GSI – Darmstadt, IFIN-Bucharest, Uni Heidelberg,

Uni Tsinghua – Beijing, USTC Hefei

readout: ~ 500 Channels with a new readout-chain based on:

- PADI + GET4 TDC (https://wiki.gsi.de/pub/EE/GeT4/get4.pdf)

- DAQ: DPB (Data Processing Board) + FLIB (First Level Interface Board)

The influence of the readout scheme on the slight lower efficiency is under investigation

MSMGRPC2018 prototype for the CBM-TOF highest granularity zone

Design

32 strips; 60 mm (strip length) x 300 mm

Readout electrode: 9.02 mm pitch= 1.27 mm w + 7.75 mm g High Voltage electrode: 9.02 mm pitch= 7.37 mm w + 1.65mm g

1.27/7.37 mm readout/HV strip width

Assembling

In-house electronics and cosmic – ray test of MGMSRPC2018 prototype

dedicated MSMGRPC test laboratory

	I _{dark}	Dark rate
RPC1	< 1 nA	0.43 Hz/cm ²
RPC2	< 1 nA	0.46 Hz/cm ²

Plastic Scintillator + 2PM

for each RPC:

- 16 operated strips, readout at both ends
- (16 x 0.902 cm) x 6 cm = 86.6 cm² operated area
- $HV = \pm 5500 V$
- NINO FEE + CAEN TDCs
- FEE Threshold = 160 mV
- Gas mixture: 90% C₂H₂F₄ + 10% SF₆

In-house cosmic – ray test

Mariana Petris, XXIII International School on Nuclear Physics, 22 – 28 September 2019, Varna, Bulgaria

time (channels)

mCBM@SIS18

• a CBM full system test 2018 – 2021 in high-rate nucleus-nucleus collisions at GSI/FAIR

mCBM test-setup will focus on the

- test of final detector prototypes
- free streaming data transport to a computer farm
- online reconstruction and event selection
- offline data analysis

March 2019 in-beam test

Beam: ¹⁰⁷Ag of 1.6 GeV/u on Au target Readout: PADIX + GET4, free-streaming DAQ

- Threshold scan @ given high voltage
- High voltage scan at given threshold
- High rate scan at given high voltage and threshold:

from low rate: $I_{_{RPC}}\text{=}0.01~\mu\mathrm{A}$ to 'high rate': $I_{_{RPC}}\text{=}8~\mu\mathrm{A}$

Preliminary results of mCBM beam time

Cbm-TOF Inner Wall Design

Module M1

CBM-TOF inner zone

- $\sim 15 \text{ m}^2$ active area
- 12 modules of 4 types (M1, M2, M3, M4)
- 470 MGMSRPC counters with 0.9 mm strip pitch,
- of 3 types (60 mm (1a), 100 mm (1b) and 200 mm (1c) strip length)
- 30 080 readout channels

Module M1:

- 51 MGMSRPC counters: (30 (1a), 18 (1b), 3 (1c))
- 3264 readout channels
- its construction will start in the near future

Do we have

for involving in the construction of the CBM-TOF inner zone?

ALICE experiment @ LHC

HPD involvement in ALICE

ALICE-TRD prototype tests
Design of the FEE chip (PASA)
ALICE-TRD chamber assembling & tests
ALICE-TRD SMs installation
ALICE-TPC upgrade based on GEM technology, OROC assembling & tests
Data analysis

Construction of 130 (24%) out of 540 ALICE-TRD chambers

Construction of 20 (50%) out of 40 OROCs ALICE-TPC upgrade based on GEMs

ALICE-TRD chamber construction

ALICE-TRD chamber tests

Checks of electrical connections Wire tension & pitch measuring of multiwire electrodes

Absolute gain, gain uniformity & energy resolution $@^{55}Fe$ source

Oxygen = 15 ppm $I^{dark} = 1-2 nA$ 70% Ar + 30% CO

ALICE-TPC upgrade - OROC assembling and testing Assembling Testing

Testing

Conclusions & Outlook

- A method to tune the MSMGRPC signal transmission line impedance such to match the input impedance of the corresponding front-end electronics was developed, exploiting the MSMGRPC architecture developed in our group.
 The required matching can be achieved independent on the adjustment of the MSMGRPC granularity.
- Performance of the prototypes based on this method was confirmed by the in-beam test results.
- **Inner-zone of the CBM-TOF subsystem will be based on such architecture.**
- > Assembling of a full size module will start in the near future.
- We have the infrastructure, experience and manpower for involving in the CBM – TOF inner wall construction.

People involved in the CBM-TOF presented activities:

HPD/IFIN-HH

V. Aprodu

D. Bartoş

G. Caragheorgheopol

V. Duța

M. Petriş

M. Petrovici

L. Prodan

A. Radu

L. Rădulescu

V. Simion

GSI Darmstadt Jochen Frühauf

Universität Heidelberg Ingo Deppner Norbert Herrmann

Acknowledgements

ÌFÍN-HH

www.ifin.ro

HADRON PHYSICS DEPARTMENT

