

# Throttling Studies for the CBM Self-triggered Readout

Xin Gao<sup>1,2</sup>, Walter F.J. Müller<sup>1</sup>, Jörg Lehnert<sup>1</sup>, David Emschermann<sup>1</sup>

<sup>1</sup> GSI, Darmstadt, Germany,

<sup>2</sup> Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

### The CBM data challenge



Interaction Rate [Hz] STAR FX Collision Energy (√s<sub>NN</sub>) [GeV]

Interaction Rate for CBM at SIS100

- fixed target setup to investigate the QGP phase diagram in region of high baryondensities
- high interaction rate environment:  $10^5 - 10^7/s$  (A+A), up to  $10^9/s$  (p+A)
- fast and radiation hard detectors with freestreaming readout electronics
- high-speed Data AQuisition (DAQ) system
- more than 5.000 GBT links operating at 4.8 Gbps as data source
- about 1 TByte/s bandwidth to the Green Cube

### **CBM** readout topology based on STS



Hierarchy of the readout tree of the STS subsystem

- This study is based on Silicon Tracking System (STS) subsystem which is closest to the target.
- The setup comprises (from left to right) 14400 STSXYTER ASICs, populating 1800 Front-End Boards (FEB-8), interfacing to about 600 GBTx Readout Board (ROB-3), connecting to about 80 Common Readout Interface cards (CRI) which in turn are orchestrated by the Timing and Fast Control system (TFC)
- All of the components are under the supervision of the Experiment Control System (ECS)

### Hardware functional diagram



### **Communication structure**



### Throttling strategies

- "Clear" strategy: clear the ASIC channel FIFOs, then re-enable data taking immediately.
- "Stop" strategy: stop accepting new hits, drain the ASIC channel FIFOs, then restart accepting hits.

- Closed-loop simulation model: The data flow model in Questa calls Linux shells to invoke the hit generator and result analysis in C++/ROOT.
- Simulation time: 10ms
- Simulation scale: 32 ASICs\*128 Channels
- Readout bandwidth: 50M Hits/sec (5 readout links/ASIC)
- Drain time of the STSXYTER: 20.48 us

- Average event size = 5 hits/ASIC
- Hit rate = Event rate \* Event size
- Normalized hit rate = Hit rate/Readout bandwidth
- Pileup correction: Valid hit rate decreases after removing pileup on the same channels.
- Good events: restorable events, in which 95% of hits are saved.

### Simulation with stable beam intensity



### When the hit rate exceeds the bandwidth limit:

- with clear strategy, the good events plateau.
- with stop strategy, the good events have a small decrease slope.
- without throttling, the good events are quickly down to 0.

## Simulation with realistic beam intensity fluctuation

Beam intensity resolution is 20us. The event rates obey Poisson process during each 20us. Beam intersity structure (resolution: 20 us)

The average event rate  $\propto$  beam intensity;



### When the hit rate exceeds the bandwidth limit:

- with clear strategy, the good events have a small increase slope.
- with stop strategy, the good events plateau.
- without throttling, the good events decrease rapidly.



