Laboratory Astrophysics along the Cosmic Cycle of Gas # Daniel Wolf Savin Columbia University # Diffuse clouds are a first step in present day star formation process # Chemistry plays an important role in the evolution of diffuse clouds (H, He O, C) $n_{\rm H} \sim 10 \text{-} 100 \text{ cm}^{-3}$ **Binary Reactions** $T_{\rm gas} \sim 50-100 \ {\rm K}$ Ion-neutral chemistry So what ionizes the gas and initiates the chemistry? H atoms shield cloud interiors from ionizing radiation Ionization is by cosmic rays (MeV protons) # Cosmic ray ionization rate (CRIR) helps drive the evolution of diffuse clouds - CRIR of H (ζ_H) initiates the chemistry and thereby affects the cooling of the cloud. - $\zeta_{\rm H}$ sets the ionization fraction of the cloud, which couples the gas dynamics to ambient B field. - This affects the transfer of angular momentum, dissipation of turbulence, and collapse of cloud. #### **Formation** $$CR + H \rightarrow CR' + H^+ + e^-$$ $$H^+ + O \rightarrow H + O^+$$ $$O^+ + H_2 \rightarrow OH^+ + H$$ #### **Formation** $$CR + H \rightarrow CR' + H^+ + e^-$$ $$H^+ + O \rightarrow H + O^+$$ $$O^+ + H_2 \rightarrow OH^+ + H$$ #### **Formation** $$CR + H \rightarrow CR' + H^+ + e^-$$ $$H^+ + O \rightarrow H + O^+$$ $$O^+ + H_2 \rightarrow OH^+ + H$$ Rate ~ $\zeta_H n_H$ #### **Formation** $$CR + H \rightarrow CR' + H^+ + e^-$$ $$H^+ + O \rightarrow H + O^+$$ $$O^+ + H_2 \rightarrow OH^+ + H$$ Rate $\sim \zeta_H n_H$ #### **Destruction** Dissociative Recombination (DR) Rate ~ $k_{DR}n_{e-}n_{OH+}$ **Assuming quasi-steady state** Formation ~ Destruction Observations yield n_{e-} , n_{OH+} , and n_{H} How well do we know k_{DR} ? # What are the challenges in generating reliable DR data for OH+ - QM calculations for multi-electron systems are theoretically and computationally challenging. - Past lab studies used highly excited OH⁺ not appropriate for diffuse cloud temperatures. - How can one create internally cold OH+ and interact it with electrons? ### The Cryogenic Storage Ring (CSR) ## The Cryogenic Storage Ring (CSR) ### **The Team Members** DWS, Andreas Wolf, OldA Novotny, Patrick Wilhelm, Ábel Kálosi, Daniel Paul, and Sunny Saurabh ## Stay tuned for future results. # Pathway from atoms in space to life on Earth is full of unknowns How far did interstellar chemistry take us on this pathway towards life? ## The interstellar medium exhibits a rich chemistry 200+ molecules have been found. 3/4^{ths} contain carbon (C). **Interstellar chemistry is** organic in nature. There's water there too. | Species | Mass | Species | Mass | Species | Mass | Species | Mass | |---------------------------------|------|---------------------|------|-------------------------------------|------|--------------------------------------|------| | H_2 | 2 | NO | 30 | HOCO+ | 45 | CH ₃ CONH ₂ | 59 | | $\mathrm{H_3}^+$ | 3 | CF^+ | 31 | NH_2CHO | 45 | HNCS | 59 | | CH | 13 | $\mathrm{CH_3NH_2}$ | 31 | PN | 45 | C_5 | 60 | | $\mathrm{CH^{+}}$ | 13 | ${\rm H_3CO^+}$ | 31 | AlF | 46 | CH ₂ OHCHO | 60 | | CH_2 | 14 | HNO | 31 | C_2H_5OH | 46 | CH ₃ COOH | 60 | | CH_3 | 15 | $\mathrm{CH_{3}OH}$ | 32 | CH ₃ OCH ₃ | 46 | HCOOCH ₃ | 60 | | NH | 15 | $\mathrm{SiH_4}$ | 32 | H_2CS | 46 | OCS | 60 | | CH_4 | 16 | $_{ m HS}$ | 33 | НСООН | 46 | SiS | 60 | | NH_2 | 16 | $\mathrm{HS^{+}}$ | 33 | NS | 46 | C_5H | 61 | | NH_3 | 17 | H_2S | 34 | CH ₃ SH | 48 | AlCl | 62 | | ОН | 17 | H_2S^+ | 34 | SO | 48 | HOCH ₂ CH ₂ OH | 62 | | $\mathrm{OH^{+}}$ | 17 | C_3 | 36 | SO^+ | 48 | HC_4N | 63 | | H_2O | 18 | HCl | 36 | C_4H | 49 | $\mathrm{CH_{3}C_{4}H}$ | 64 | | H_2O^+ | 18 | $c-C_3H$ | 37 | C_4H^- | 49 | S_2 | 64 | | $\mathrm{NH_4}^+$ | 18 | $l-C_3H$ | 37 | NaCN | 49 | SiC_3 | 64 | | H_3O^+ | 19 | $c-C_3H_2$ | 38 | C_3N | 50 | SO_2 | 64 | | HF | 20 | H_2CCC | 38 | H_2CCCC | 50 | CH ₂ CCHCN | 65 | | C_2 | 24 | HCCN | 39 | HCCCCH | 50 | CH_3C_3N | 65 | | C_2H | 25 | C_2O | 40 | MgCN | 50 | C_3S | 68 | | C_2H_2 | 26 | $\mathrm{CH_{2}CN}$ | 40 | MgNC | 50 | FeO | 72 | | CN | 26 | CH ₃ CCH | 40 | HC_3N | 51 | C_6H | 73 | | CN^+ | 26 | SiC | 40 | HCCNC | 51 | C_6H^- | 73 | | HCN | 27 | $\mathrm{CH_{3}CN}$ | 41 | HNCCC | 51 | C_5N | 74 | | HNC | 27 | $\mathrm{CH_3NC}$ | 41 | $c\text{-SiC}_2$ | 52 | C_6H_2 | 74 | | C_2H_4 | 28 | H_2CCO | 42 | C_3O | 52 | HCCCCCCH | 74 | | CO | 28 | NH_2CN | 42 | $H_2C_3N^+$ | 52 | HC_5N | 75 | | CO^+ | 28 | SiN | 42 | AlNC | 53 | KCl | 75 | | H_2CN | 28 | CP | 43 | CH ₂ CHCN | 53 | NH ₂ CH ₂ COOH | 75 | | HCNH ⁺ | 28 | HNCO | 43 | $c-H_2C_3O$ | 54 | SiC_4 | 76 | | N_2^+ | 28 | HNCO- | 43 | HC_2CHO | 54 | C_6H_6 | 78 | | CH ₂ NH | 29 | $c-C_2H_4O$ | 44 | SiCN | 54 | C_7H | 85 | | НСО | 29 | CH ₃ CHO | 44 | SiNC | 54 | $\mathrm{CH_{3}C_{6}H}$ | 88 | | HCO ⁺ | 29 | CO_2 | 44 | $\mathrm{CH_{3}CH_{2}CN}$ | 55 | C_8H | 97 | | $\mathrm{HN_2}^+$ | 29 | CO_2^+ | 44 | C_2S | 56 | C_8H^- | 97 | | HOC+ | 29 | CS | 44 | C_3H_4O | 56 | HC_7N | 99 | | SiH | 29 | N_2O | 44 | CH ₃ CH ₂ CHO | 58 | HC_9N | 123 | | CH ₃ CH ₃ | 30 | SiO | 44 | CH ₃ COCH ₃ | 58 | HC ₁₁ N | 147 | | ${\rm H_2CO}$ | 30 | HCS^+ | 45 | NaCl | 58 | | | | Source: astrochemistry.net | | | | | | | | # Some gas-phase pathways for forming the chemicals needed for life **Conditions in dense molecular clouds:** $$n \sim 10^4 \text{ cm}^{-3}$$ $T_{\text{gas}} \sim 10 \text{ K}$ $$\left\{ \mathbf{H_2} \right\} \rightarrow \left[\mathbf{H_3^+ + C} \rightarrow \mathbf{CH_n^+} \right] + \left[\begin{matrix} \mathbf{H_C} \\ \mathbf{N_O} \end{matrix} \right] \rightarrow \left[\begin{matrix} \mathbf{carboxyI} \\ \mathbf{cyano} \\ \mathbf{amino} \end{matrix} \right]$$ ### Published data for C + $H_3^+ \rightarrow CH^+ + H_2^-$ QM calc's beyond current theoretical abilities. No lab data exist at molecular cloud temperatures. Over factor of 2 uncertainty in the rate coefficient. ## We have built an apparatus to study $$C + H_3^+ \rightarrow CH_n^+ + H_{3-n}$$ C-source ### **The Team Members** Ken Miller, X. Urbain, DWS, Jule Stützel, A. O'Connor, Nathalie de Ruette ### C + H₃+ thermal rate coefficients Good agreement with previous measurement. Cause for discrepancy with theory is not clear. ### C + H₃+ summed thermal rate coefficients Reduced uncertainty from factor of >2 to <20%. # New C + H₃+ data reduces abundance uncertainties in astrochemical models # New C + H₃+ data reduces abundance uncertainties in astrochemical models ### **The Team Members** UCL Université catholique de Louvain **ULB** DWS, Xavier Urbain, Pierre-Michel Hillenbrand, & Kyle Bowen Not shown – Jacky Liévin T = 5800 K What causes this T inversion? An unsolved problem since 1939 ## Are magnetic fields the heat source? ### What do solar observations tell us? We used Extreme Ultraviolet Imaging Spectrometer (EIS) onboard Hinode, launched in 2006 ### We looked at a polar coronal hole ### And analyzed the collected spectra ### Spectroscopic evidence for MHD waves #### Spectroscopic evidence for MHD waves $$\Delta \lambda \propto \left(v_{\rm nt}^2 + \frac{2k_{\rm B}T_{\rm i}}{M_{\rm i}}\right)^{1/2}$$ v_{nt} – Nonthermal velocity **k**_B – Boltzmann's constant T_i – Ion temperature M_i – Ion Mass Wave amplitude δv given by $\langle \delta v \rangle^2 = 2v_{nt}^2$ ### Wave amplitudes expressed as $v_{\rm nt}$ ### Is the MHD wave energy conserved? Wave power (energy/time) be expressed as $$FA = \frac{1}{\sqrt{\pi}} \rho^{\frac{1}{2}} v_{\text{nt}}^2 BA$$ In coronal holes, *B-field*Area* is constant. For undamped waves *Flux*Area* is constant giving $$v_{\rm nt} \propto ho^{-1/4}$$ Does v_{nt} increase with height as ρ decreases? ### Wave damping begins about 1.15 R_o ### Wave energy is not conserved #### MICHAEL HAHN #### 2012 REGIONAL AWARD WINNER — POST-DOC **Current Position:** Associate Research Scientist Institution: Columbia University Discipline: Astrophysics & Cosmology **Recognized for:** Advancing our knowledge of the extreme temperature of the Sun's corona Areas of Research Interest and Expertise:Solar physics, especially to determine the sources of coronal heating and the acceleration of the solar wind; plasma waves and damping processes; experimental measurements of atomic properties needed to interpret astrophysical spectra. # Our findings raise several questions that we are now trying to answer $$FA = \frac{1}{\sqrt{\pi}} \rho^{\frac{1}{2}} v_{\text{nt}}^2 BA$$ - How well do we know the electron density used to infer the energy flux? - What is the plasma physics mechanism that causes the wave damping? - We are conducting laboratory studies to address both of these issues. ### **Outline** ### Outline #### What plasma physics causes damping? Longitudinal gradients: B and ρ fall off with R Gradients in V_{Δ} can cause reflection and turbulence # Using the Large Plasma Device (LAPD), we are exploring this question LAPD is an ~ 20 m long discharge tube surrounded by solenoid coils # Using the Large Plasma Device (LAPD), we are exploring this question ### **The Team Members** Sayak Bose, Mike Hahn, Walter Gekelman, and Steve Vincena (missing from photo: Troy Carter and Shreekrishna Tripathi) #### Alfvén Waves in LAPD **Before gradient** After gradient ### Transmittance through the Gradient What are the plasma & solar physics implications? ### **Outline** Ruitian Zhang Kyle Bowen Benjamin Bostick **Deborah Domingue** **Rosemary Killen** **Denton Ebel, George Harlow** ### One of these planets is unlike the others Mercury Venus - All are rocky - All have Fe cores - Most have abundant surface Fe Earth Moon Mars - Mercury's surface is Fe poor - Why? # Planet formation constrained by surface mineralogy inferred from the exosphere Mercury has a tenuous Na exosphere Is this coming from rocks on the surface of the planet? Ion sputtering, impact vaporization, photodesorption,...? (Killen, private communication) # Solar wind ion impacting the surface may explain the Na exosphere (Slavin et al. 2012, J. Geophys. Res. Space Sci., 117, A 01215) # But sputtering of regolith-like loose powders by ions is poorly understood - Regolith-like loose powders are difficulty to study experimentally - All samples to date have been generated in atmosphere, unlike the vacuum of space - Most studies have used ion beam energies much greater than the 1 keV/amu of the solar wind - In-situ and in-vacuo diagnostics are needed to prevent contamination of the activated surfaces # We are building a novel apparatus to study ion sputtering of loose powders # We are building a novel apparatus to study ion sputtering of loose powders ### Stay tuned for future results. ### Summary ### And thanks for your attention