Laboratory Astrophysics along the Cosmic Cycle of Gas

Daniel Wolf Savin Columbia University

Diffuse clouds are a first step in present day star formation process

Chemistry plays an important role in the evolution of diffuse clouds (H, He O, C)

 $n_{\rm H} \sim 10 \text{-} 100 \text{ cm}^{-3}$

Binary Reactions

 $T_{\rm gas} \sim 50-100 \ {\rm K}$

Ion-neutral chemistry

So what ionizes the gas and initiates the chemistry?

H atoms shield cloud interiors from ionizing radiation

Ionization is by cosmic rays (MeV protons)

Cosmic ray ionization rate (CRIR) helps drive the evolution of diffuse clouds

- CRIR of H (ζ_H) initiates the chemistry and thereby affects the cooling of the cloud.
- $\zeta_{\rm H}$ sets the ionization fraction of the cloud, which couples the gas dynamics to ambient B field.
- This affects the transfer of angular momentum, dissipation of turbulence, and collapse of cloud.

Formation

$$CR + H \rightarrow CR' + H^+ + e^-$$

$$H^+ + O \rightarrow H + O^+$$

$$O^+ + H_2 \rightarrow OH^+ + H$$

Formation

$$CR + H \rightarrow CR' + H^+ + e^-$$

$$H^+ + O \rightarrow H + O^+$$

$$O^+ + H_2 \rightarrow OH^+ + H$$

Formation

$$CR + H \rightarrow CR' + H^+ + e^-$$

$$H^+ + O \rightarrow H + O^+$$

$$O^+ + H_2 \rightarrow OH^+ + H$$

Rate ~ $\zeta_H n_H$

Formation

$$CR + H \rightarrow CR' + H^+ + e^-$$

$$H^+ + O \rightarrow H + O^+$$

$$O^+ + H_2 \rightarrow OH^+ + H$$

Rate $\sim \zeta_H n_H$

Destruction

Dissociative Recombination (DR)

Rate ~ $k_{DR}n_{e-}n_{OH+}$

Assuming quasi-steady state

Formation ~ Destruction

Observations yield n_{e-} , n_{OH+} , and n_{H}

How well do we know k_{DR} ?

What are the challenges in generating reliable DR data for OH+

- QM calculations for multi-electron systems are theoretically and computationally challenging.
- Past lab studies used highly excited OH⁺ not appropriate for diffuse cloud temperatures.
- How can one create internally cold OH+ and interact it with electrons?

The Cryogenic Storage Ring (CSR)

The Cryogenic Storage Ring (CSR)

The Team Members

DWS, Andreas Wolf, OldA Novotny, Patrick Wilhelm, Ábel Kálosi, Daniel Paul, and Sunny Saurabh

Stay tuned for future results.

Pathway from atoms in space to life on Earth is full of unknowns

How far did interstellar chemistry take us on this pathway towards life?

The interstellar medium exhibits a rich chemistry

200+ molecules have been found.

3/4^{ths} contain carbon (C).

Interstellar chemistry is organic in nature.

There's water there too.

Species	Mass	Species	Mass	Species	Mass	Species	Mass
H_2	2	NO	30	HOCO+	45	CH ₃ CONH ₂	59
$\mathrm{H_3}^+$	3	CF^+	31	NH_2CHO	45	HNCS	59
CH	13	$\mathrm{CH_3NH_2}$	31	PN	45	C_5	60
$\mathrm{CH^{+}}$	13	${\rm H_3CO^+}$	31	AlF	46	CH ₂ OHCHO	60
CH_2	14	HNO	31	C_2H_5OH	46	CH ₃ COOH	60
CH_3	15	$\mathrm{CH_{3}OH}$	32	CH ₃ OCH ₃	46	HCOOCH ₃	60
NH	15	$\mathrm{SiH_4}$	32	H_2CS	46	OCS	60
CH_4	16	$_{ m HS}$	33	НСООН	46	SiS	60
NH_2	16	$\mathrm{HS^{+}}$	33	NS	46	C_5H	61
NH_3	17	H_2S	34	CH ₃ SH	48	AlCl	62
ОН	17	H_2S^+	34	SO	48	HOCH ₂ CH ₂ OH	62
$\mathrm{OH^{+}}$	17	C_3	36	SO^+	48	HC_4N	63
H_2O	18	HCl	36	C_4H	49	$\mathrm{CH_{3}C_{4}H}$	64
H_2O^+	18	$c-C_3H$	37	C_4H^-	49	S_2	64
$\mathrm{NH_4}^+$	18	$l-C_3H$	37	NaCN	49	SiC_3	64
H_3O^+	19	$c-C_3H_2$	38	C_3N	50	SO_2	64
HF	20	H_2CCC	38	H_2CCCC	50	CH ₂ CCHCN	65
C_2	24	HCCN	39	HCCCCH	50	CH_3C_3N	65
C_2H	25	C_2O	40	MgCN	50	C_3S	68
C_2H_2	26	$\mathrm{CH_{2}CN}$	40	MgNC	50	FeO	72
CN	26	CH ₃ CCH	40	HC_3N	51	C_6H	73
CN^+	26	SiC	40	HCCNC	51	C_6H^-	73
HCN	27	$\mathrm{CH_{3}CN}$	41	HNCCC	51	C_5N	74
HNC	27	$\mathrm{CH_3NC}$	41	$c\text{-SiC}_2$	52	C_6H_2	74
C_2H_4	28	H_2CCO	42	C_3O	52	HCCCCCCH	74
CO	28	NH_2CN	42	$H_2C_3N^+$	52	HC_5N	75
CO^+	28	SiN	42	AlNC	53	KCl	75
H_2CN	28	CP	43	CH ₂ CHCN	53	NH ₂ CH ₂ COOH	75
HCNH ⁺	28	HNCO	43	$c-H_2C_3O$	54	SiC_4	76
N_2^+	28	HNCO-	43	HC_2CHO	54	C_6H_6	78
CH ₂ NH	29	$c-C_2H_4O$	44	SiCN	54	C_7H	85
НСО	29	CH ₃ CHO	44	SiNC	54	$\mathrm{CH_{3}C_{6}H}$	88
HCO ⁺	29	CO_2	44	$\mathrm{CH_{3}CH_{2}CN}$	55	C_8H	97
$\mathrm{HN_2}^+$	29	CO_2^+	44	C_2S	56	C_8H^-	97
HOC+	29	CS	44	C_3H_4O	56	HC_7N	99
SiH	29	N_2O	44	CH ₃ CH ₂ CHO	58	HC_9N	123
CH ₃ CH ₃	30	SiO	44	CH ₃ COCH ₃	58	HC ₁₁ N	147
${\rm H_2CO}$	30	HCS^+	45	NaCl	58		
Source: astrochemistry.net							

Some gas-phase pathways for forming the chemicals needed for life

Conditions in dense molecular clouds:

$$n \sim 10^4 \text{ cm}^{-3}$$

 $T_{\text{gas}} \sim 10 \text{ K}$

$$\left\{ \mathbf{H_2} \right\} \rightarrow \left[\mathbf{H_3^+ + C} \rightarrow \mathbf{CH_n^+} \right] + \left[\begin{matrix} \mathbf{H_C} \\ \mathbf{N_O} \end{matrix} \right] \rightarrow \left[\begin{matrix} \mathbf{carboxyI} \\ \mathbf{cyano} \\ \mathbf{amino} \end{matrix} \right]$$

Published data for C + $H_3^+ \rightarrow CH^+ + H_2^-$

QM calc's beyond current theoretical abilities. No lab data exist at molecular cloud temperatures. Over factor of 2 uncertainty in the rate coefficient.

We have built an apparatus to study

$$C + H_3^+ \rightarrow CH_n^+ + H_{3-n}$$

C-source

The Team Members

Ken Miller, X. Urbain, DWS, Jule Stützel, A. O'Connor, Nathalie de Ruette

C + H₃+ thermal rate coefficients

Good agreement with previous measurement. Cause for discrepancy with theory is not clear.

C + H₃+ summed thermal rate coefficients

Reduced uncertainty from factor of >2 to <20%.

New C + H₃+ data reduces abundance uncertainties in astrochemical models

New C + H₃+ data reduces abundance uncertainties in astrochemical models

The Team Members

UCL Université catholique de Louvain

ULB

DWS, Xavier Urbain, Pierre-Michel Hillenbrand, & Kyle Bowen Not shown – Jacky Liévin

T = 5800 K

What causes this T inversion?

An unsolved problem since 1939

Are magnetic fields the heat source?

What do solar observations tell us?

We used Extreme Ultraviolet Imaging Spectrometer (EIS) onboard Hinode, launched in 2006

We looked at a polar coronal hole

And analyzed the collected spectra

Spectroscopic evidence for MHD waves

Spectroscopic evidence for MHD waves

$$\Delta \lambda \propto \left(v_{\rm nt}^2 + \frac{2k_{\rm B}T_{\rm i}}{M_{\rm i}}\right)^{1/2}$$

v_{nt} – Nonthermal velocity

k_B – Boltzmann's constant

 T_i – Ion temperature

M_i – Ion Mass

Wave amplitude δv given by $\langle \delta v \rangle^2 = 2v_{nt}^2$

Wave amplitudes expressed as $v_{\rm nt}$

Is the MHD wave energy conserved?

Wave power (energy/time) be expressed as

$$FA = \frac{1}{\sqrt{\pi}} \rho^{\frac{1}{2}} v_{\text{nt}}^2 BA$$

In coronal holes, *B-field*Area* is constant. For undamped waves *Flux*Area* is constant giving

$$v_{\rm nt} \propto
ho^{-1/4}$$

Does v_{nt} increase with height as ρ decreases?

Wave damping begins about 1.15 R_o

Wave energy is not conserved

MICHAEL HAHN

2012 REGIONAL AWARD WINNER — POST-DOC

Current Position:

Associate Research Scientist

Institution:

Columbia University

Discipline:

Astrophysics & Cosmology

Recognized for: Advancing our knowledge of the extreme temperature of the Sun's corona

Areas of Research Interest and Expertise:Solar physics, especially to determine the sources of coronal heating and the acceleration of the solar wind; plasma

waves and damping processes; experimental measurements of atomic properties needed to interpret astrophysical spectra.

Our findings raise several questions that we are now trying to answer

$$FA = \frac{1}{\sqrt{\pi}} \rho^{\frac{1}{2}} v_{\text{nt}}^2 BA$$

- How well do we know the electron density used to infer the energy flux?
- What is the plasma physics mechanism that causes the wave damping?
- We are conducting laboratory studies to address both of these issues.

Outline

Outline

What plasma physics causes damping?

Longitudinal gradients: B and ρ fall off with R

Gradients in V_{Δ} can cause reflection and turbulence

Using the Large Plasma Device (LAPD), we are exploring this question

LAPD is an ~ 20 m long discharge tube surrounded by solenoid coils

Using the Large Plasma Device (LAPD), we are exploring this question

The Team Members

Sayak Bose, Mike Hahn, Walter Gekelman, and Steve Vincena (missing from photo: Troy Carter and Shreekrishna Tripathi)

Alfvén Waves in LAPD

Before gradient

After gradient

Transmittance through the Gradient

What are the plasma & solar physics implications?

Outline

Ruitian Zhang Kyle Bowen Benjamin Bostick

Deborah Domingue

Rosemary Killen

Denton Ebel, George Harlow

One of these planets is unlike the others

Mercury Venus

- All are rocky
- All have Fe cores
- Most have abundant surface Fe

Earth Moon Mars

- Mercury's surface is Fe poor
- Why?

Planet formation constrained by surface mineralogy inferred from the exosphere

Mercury has a tenuous Na exosphere

Is this coming from rocks on the surface of the planet?

Ion sputtering, impact vaporization, photodesorption,...?

(Killen, private communication)

Solar wind ion impacting the surface may explain the Na exosphere

(Slavin et al. 2012, J. Geophys. Res. Space Sci., 117, A 01215)

But sputtering of regolith-like loose powders by ions is poorly understood

- Regolith-like loose powders are difficulty to study experimentally
- All samples to date have been generated in atmosphere, unlike the vacuum of space
- Most studies have used ion beam energies much greater than the 1 keV/amu of the solar wind
- In-situ and in-vacuo diagnostics are needed to prevent contamination of the activated surfaces

We are building a novel apparatus to study ion sputtering of loose powders

We are building a novel apparatus to study ion sputtering of loose powders

Stay tuned for future results.

Summary

And thanks for your attention

