Life, the Universe and Everything

Ulli Köster 12 November 2019

Institut Max von Laue – Paul Langevin

Max von Laue (1879-1960) Nobel Prize 1914 **Diffraction** of X-rays

Paul Langevin (1872-1946) Langevin dynamics Magnetism, etc.

An international user facility: ≈13 member states

The ILL Reactor

Neutron guides vs. light guides

Neutron guide: $n_{wall} < n_{vacuum} = 1$ Light guide: $n_{core} > n_{cladding} > 1$

Guided neutron beams are "clean"

Fast neutrons and gamma rays are not transported.

H. Abele et al. Nucl. Instr. Meth. A562 (2006) 407.

ILL instruments

>40 instruments running simultaneously for 150-200 days per year Neutron beams with up to $2 \cdot 10^{10}$ n.cm⁻²s⁻¹ flux and up to 320 cm² area

Why neutrons ?

- wavelength of thermal neutrons ≈ interatomic distances (sol., liq.)
 ⇒ good for scattering
- neutron mass \approx atom mass

 \Rightarrow large momentum transfer possible

- weakly interacting \Rightarrow good penetration (thicker samples...)
- good to "see" light elements, in particular hydrogen
- magnetic moment

 \Rightarrow magnetic scattering

In operando study of lithium batteries S1: LiMn₂O₄

Also:

- hydrogen (biological samples !)
- magnetism
- reflectometry
- SANS
 - inelastic neutron scattering

M. Bianchini et al. JPC C 2014;118:25947.

The LOHENGRIN fission fragment recoil separator

P. Armbruster et al., Nucl Instr Meth 1976;39:213.

Life, the Universe and Everything

Structural imaging versus functional imaging molecular imaging

Radiology

Nuclear Medicine

Molecular imaging

Perfusion

What is Theranostics ?

Therapy based on diagnostics personalized medicine, stratified medicine

Saul Hertz (Massachusetts General Hospital):

- 1936 proposes iodine radiotracer
- 1937 rabbit studies with ¹²⁸I
- 1941 clinical therapy studies with ¹³⁰I

Thyroid scintigraphy and therapy

(Papillary) thyroid cancer has the highest survival of all malignant cancers!

How can one treat such patients?

Learning from history

The principle of targeted therapies

- "attractive" vector > high uptake by the target
- transportable
- good in-vivo stability
- warriors "not visible"
- delayed uptake > suitable half-life
- limited space > high specific activity
- optimum arms
- specific

Multidisciplinary collaboration to fight cancer

Nuclear medicine and medical physics

Structural Formula of DOTA-TOC/TATE

Male 36 years of age Small cell pancreatic neuroendocrine tumour Liver metastases Ki-67 index 10-15% (liver biopsy)

4 cycles with ¹⁷⁷Luoctreotate and capecitabine

Partial remission

Roelf Valkema, EANM-2008.

¹⁷⁷Lu-Peptide Receptor Radionuclide Therapy of midgut neuroendocrine tumors

J. Strosberg et al., N Engl J Med 2017;376:125.

¹⁷⁷Lu-radioligand therapy of advanced prostate cancer

C. Kratochwil et al., Eur J Nucl Med Mol Imaging 2015;42:987.
R.P. Baum et al., J Nucl Med 2016;57:1006.
C. Kratochwil et al., J Nucl Med 2016;57:1170.
K. Rahbar et al., J Nucl Med 2017;58:85.
M.S. Hofman et al., Lancet Oncol 2018;19:825.
M.M. Heck et al., Eur Urol 2019;75:920.
T.W. Barber et al., J Nucl Med 2019; 60:955.

The "gold standard" for radionuclide therapy

Institut Laue-Langevin 2018: \approx 1600 scientific users came to ILL \approx 4000 patients got ¹⁷⁷Lu from ILL

Radionuclides for Radioligand Therapy

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range	cross-fire
Y-90	2.67 d	934 β	-	12 mm	Estab-
I-131	8.02 d	182 β	364 (82%)	3 mm	isotopes
Lu-177	6.65 d	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotopes
β-					

localized

¹⁶¹Tb versus ¹⁷⁷Lu

E. Hindié et al., J Nucl Med 2016;57:759.

Diameter (µm)

¹⁶¹Tb-PSMA-617 vs. ¹⁷⁷Lu-PSMA-617

C. Müller et al., Eur J Nucl Med Mol Imaging 2019;46:1919.

University of Zurich^{™™}

¹⁷⁷Lu-radioligand therapy of advanced prostate cancer

Matched pairs for theranostics

First-in-human study with ¹⁵²Tb-PSMA-617

C. Müller et al. EJNMMI Research 2019;9:68.

Alpha-PET with ¹⁴⁹Tb

C. Müller et al. EJNMMI Radiopharm Chem 2016;1:5.

¹⁴⁹Tb-rituximab in leukemia mouse model

G.J. Beyer et al., Eur J Nucl Med Mol Imaging 2004;31:547.

Terbium: the Swiss knife for nuclear medicine

The Nuclear Medicine Alphabet

Auger-e

Production of non-carrier-added ¹⁶¹Tb

N. Gracheva et al., EJNMMI Radiopharm Chem 2019;4:12.

Production of ¹⁴⁹Tb, ¹⁵²Tb and ¹⁵⁵Tb at ISOLDE

radioactive ion beams

Efficient parallel operation

Transport limitations (ADR, IATA)

BASIC RADIONUCLIDE VALUES FOR UNKNOWN RADIONUCLIDES OR MIXTURES

Radioactive contents	A ₁ TBq	A ₂ TBq	Activity concentration for exempt material Bq/g
Only beta or gamma emitting nuclides are known to be present	0.1 20	0.02 GBq ¹⁶	1×10^1 ¹ Tb
Alpha emitting nuclides but no neutron emitters are known to be present	0.2 90	9×10 ⁻⁵ MBq ¹⁴	1 × 10 ⁻¹ 9Tb

T. Frosio et al., Health Phys 2019;116:607.

Terbium (65)		A_2 (TBq)
Tb-149	8×10^{-1}	8×10^{-1}
Tb-157	4×10^1	4×10^1
Tb-158	1×10^{0}	1×10^{0}
Tb-160	1×10^{0}	6×10^{-1}
Tb-161	3×10^1	7×10^{-1}

2018 Edition Specific Safety Requirements

International Atomic Energy Agency

No. SSR-6 (Rev. 1)

ΙΑΕΑ

a very useful beam dump !

Harvesting isotopes at FRIB

courtesy: Greg Severin (MSU)

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

E Paige Abel et al., J. Phys. G 2019;46:100501.

Targeted therapy with ²²⁵Ac

Clemens Kratochwil et al. J Nucl Med 2016;57:1941.

Isotopes for targeted alpha therapy

12 s	Ac 213 0.80 s	Ac 214 8.2 s	Ac 215 0.17 s	Ac 216 0.44 ms	Ac 217 0.74 µs 69 ns	Ac 218 1.1 μs	Ac 219 11.8 μs	Ac 220 26 ms	Ac 221 52 ms	Ac 222	Ac 223 2.10 m	Ac 224 2.9 h	Ac 225 10.0 d	Ac 226 29.h
	u 7.36	u 7.215; 7.081 t y 139; 244	n 7.600; 7.211 e y (386)	α 9.029; 9.105 γ 83; 854; 771	h/ 660; 486; 382 a 10.54 a 0.65	a 9.205 9	n 8.964	α 7.85; 7.81; 7.68 γ 134	α 7.65; 7.44; 7.38	675; 688; n7,009; 7,00; m, 6,863 15 7; c, g	α 6.647; 6.662; 6.564; ε γ (99; 191;84)	6.060; 6.214 216:132	a 5.830; 5.793; 5.732; C 14 y 100; (150; 198; 53); e	1 a 5.34 230, 158, 254; 106
11	Ra 212 13.0.s	Ra 213 21 ms 274 m	Ra 214 2.46 s	Ra 215 1.67 ms	Ra 216 20 m 0.18 µs	Ra 217 1.6 μs	Ra 218 25.6 µs	Ra 219 10 ms	Ra 220 23 ms	Ra 221 28 s	Ra 222 38 s	Ra 227 11.4 d	Ra 224 3.66 d	Ra 225 14.8 d
788 0	w 6.899. € 7 ∀ (635)	N 546. N 5.624 1063; 6.731; 161;e* 6.524. a 8.488; e.1 110. 8.357. 216e*	n 7.137; 6.505 ¢; g γ (642)	α 8.700; 7.879 γ 834; 540	77 600, 476, 344, # 9,657; 11,028, # 9,348	n 8.99	o 8.39 9	a 7,679; 7,999 y 318; 214; 592	α 7.48 γ 465	α 6.613; 6.761; 6.668 γ 149; 93; 174 C 14	a 6.559; 8.237 7 324; (329; 473) C 14	5.77 5.6067 154; 324 130,	o 5,6854; 5,4486 1 241; C 14 w 12.0	μ= 0.3; 0.4 γ 40 κ=
10 m	Fr 211 3.10 m	Fr 212 20.0 m	Fr 213 34.6 s	Fr 214 335 ms 5.0 ms	Fr 215 0.09 µs	Fr 216 0.70 μs	Fr 217 16 µs	Fr 218	Fr 219 21 ms	Fr 220 27.4 s	Fr 221 4.9 m	Fr 222 14.2 m	Fr 223 21.8 m	Fr 224 3.3 m
e	n 6.535 540: 918; 281	6 5362 6384, 6 498 6340, 7 5274 2271 1980,	α 8,775 ¢	a 8.477; a 8.426; 0.347	и: 9.36	a 9.01 g	a 8.315	e 7.910. 7.800 7.956. e 7.967; r0:g 7.976 ty g	a 7.312 7 (352: 517)	α 6.68; 6.63; 6.58 β [~] γ 45; 106; 162	a: 6.341; 6.126 ~ 218: (101; 411) C: 14	β 1.8 γ 206; 211, 242 α 7	β [™] 1.1 α 5.34 γ 50; 80; 235	β 2.8, 2.8 γ 216, 132, 837, 1341
09 m	Rn 210 2.4 h	Rn 211 14.6 h	Rn 212 24 m	Rn 213 19.5 ms	Rn 214	Rn 215 2.3 μs	Rn 216 45 μs	Rn 217 0.54 ms	Rn 218 35 ms	Rn 21 3.91 s	Rn 220 55.6 s	Rn 221 25 m	Rn 222 3.825 d	Rn 223 23.2 m
k	ο 6.040 γ 458; (571; 649; 73)	674: 1363: 674: 1363: 676	n: 8.264	o 8.068; 7.252 y 540	Hy 102 Hy 696; Hy 102 H46; a 10.63 a 10.46 m9 207	o 8.67 9	α 8.05 0	a 7.740	∞ 7.133 ү (609)	19; 6.563; 105, 402	α 6.288 γ (550) σ <0.2	β [*] 0.8; 1.1. α 6.037; 5.788; 5.778 γ 186; 180	α 5.48948 γ (510) σ 0.74	н ^т у 593, 417; 636; 655
08 h	At 209 5.4 h	At 210 8.3 h	At 211 7.22 h	At 212	At 213 0.11 μs	At 214	At 215 0.1 ms	At 216 7 0.3 ms	At 217 32.3 ms	At 218 ~2 s	At 219 0.9 m	At 220 3.71 m	At 221 2.3 m	At 222 54 s
k;	a 5.047 3 5451 7821 790	*) # 5.524; 5.442; 5.361 y 1181; 245; 1483	u 5.067 7 (687)	1.7.84 1.7.68 7.90 7.62 9.53 9.63 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	it 9.08	n 8.782 - m 48.877 1 9 7	a 8.026 7 (405)	α 7.888 α 7.888 m ₁ χ 123 418	α 7.069 β ⁺ γ (259; 334; 595)	α 6.694; 6.653 β΄ γ	u 6.27 B-	8" α 5.490 γ 241; 290; 422	a-	β
07 1.44 h	Po 208 2.898 a	Po 207 102	Po 210 138.38 d	P 211	Po 212	Po 213 4.2 μs	Po 214 164 μs	Po 215 1.78 .s	Po 216 0.15 s	Po 217 1.53 s	Po 218 3.05 m	Po 219 >300 ns	Po 220 >300 ns	
5.71H HUL; LL	ν 5.1152 γ (292; 571) 0	4.9	n 5.90438 1 (803); a <0.0005 + <0.030; a _{k.0} 0.002; a ₁ <0.1	8.800 7.570: + 7.450 1004 - 1.000; he 570: 1	11.66. ly 728; 1 2815. 408; 500 823. ly x 10.22 a 8.785	a 8.376 y (779)	n 7.6899	V Leen	n: 6.7783 y (805)	a 6.543 J ⁺	ο 6.0024 β" γ	87.7 a.7	1-2	
)6 d	Bi 207 31.55 a	Bi 208 3.68 · 10" a	Bi 209 100	Bi 210	Bi 211 2.17	Bi 212	Bi 213 45.59 m	Bi 214 19.9 m	Bi 215	Bi 216 38m 217m	Bi 217 98.5 s	Bi 218 33 s		
(616;	µ* 570; 1064; 1770	к у 2615	11 0.011 17a, 11	+1-548: 41-712 1-9298: 4.605 201	1.6.67 6.2788 1 β ⁺ → g		β 1.4 α.6.87 γ.440; (293; 1100)	67 1 5 3 3 0 5 450 5 5 13 7 609, 1754, 1120 (in 9.079	17404 5 1200 201 200 201 200 100	67 7 1580 7 1560, 410, 380, 410	рт т 265; 254; 890; 436	(J ^{**} 3.5; 3.7 J [*] 010; 360; 426; 263	136	
05 0 ⁷ a	Pb 206 24.1	Pb 207 22.1	7b 208 52.4	Pb 209 3.253 h	Pb 210 22.3 a	Pb 211 36.1 m	Pb 212 10.64 h	Pb 213 10.2 m	Pb 214 26.8 m					
	ar 0.027	o 0.61	ur0.00023 un, ii≪8€⊧6	87.0.6 192.2	p=0.02; 0.06 γ 47; o=; 0 α 3.72 ψ ≪0.5	87 1.4 7405: 602: 427	# 0.3, 0.6 у239, 500 0	5 ⁺	∦‴ 0.7; 1.0 γ 352; 295; 242.		134			
)4 a	TI 205 70.48	TI 206 3.7 m 4.29 m	TI 207	TI 208 3.053 m	TI 209 2.16 m	TI 210 1.30 m	TI 211 >300 ns	TI 212 >300 ns		-				
	⇒ 011	463; 210; 255; JC 1.5; 1121; Y183; J	Ny 1080, 177 (.4. 351 - 1898)	β ⁺⁺ 1.0: 2.4. γ 2615; 583; 511; 880; 277.	µ= 1.8 † 1567; 465; 117	β 1.9; 2.9 γ 800; 208 β0	0=2	a= ?	132					

²¹¹At production at SPIRAL2

 $^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ with 28-29 MeV α beams

At 211 7.2 h <u>α 5.867...</u> γ (687)

1. Use of 1 kW station (\approx 10 doses in 4 h) in 2020 once alpha beams are available at SPIRAL2.

2. Design of a 10 kW rotating solid target (\approx 100 doses in 4 h).

3. Design of a liquid Bi target for continuous ²¹¹At or ²¹¹Rn extraction.

Future superconducting cw-Linac at GSI

W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, 11 April 2019

Radionuclides for Radioligand Therapy

Radio- nuclide	Half- life	E mean (keV)	Εγ (B.R.) (keV)	Range	cross-fire
Y-90	2.67 d	934 β	-	12 mm	Estab-
I-131	8.02 d	182 β	364 (82%)	3 mm	isotopes
Lu-177	6.65 d	134 β	208 (10%) 113 (6%)	2 mm	Emerging isotopes
Tb-161	6.96 d	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm	futuro
Tb-149	4.12 h	3967 α	165,	25 µm	isotopes:
Ge-71	11.4 d	8 e-	-	1.7 µm	supply-
Er-165	10.3 h	5.3 e ⁻	-	0.6 µm	

localized

Better targeted ligands require shorter-range radiation \Rightarrow need for adequate (R&D) radioisotope supply.

BROOKHAVEN NATIONAL LABORATORY

MEMORANDUM

DATE: December 4, 1958

Today 30 million clinical TO: applications per year !

FROM:

Addressees Below Daniel M. Schaeffer, Head M. BNL Patent Office P-701 and P-702 - PREPARATION OF SUBJECT: CARRIER-FREE MOLYBDENUM AND OF

TECHNETIUM FROM FISSION PRODUCTS

The New York Patent Group has carefully studied the information available relative to the above-identified item. The AEC does not at present desire to prepare a patent application on this item for the following reason:

"The method of producing carrier-free molybdenum-99 from fission products is disclosed in U. S. Patent Application S.N. 732,108, Green, Powell, Samos & Tucker (GNL Pat No. 58-17). It is noted that molybdenum-99 may be separated from its radioactive daughter, technetium-99, by absorption of a solution of molybdenum-99 on aluming and subsequent elution of its daughter with .1 nitric acid. While this method is probably novel, it appears that the product will probably be used mostly for experimental purposes in the laboratory. On this basis, no further patent action is believed warranted."

believe that this attitude is significant. We are not aware of a potential market for technetium-99 great enough to encourage one to undertake the risk of patenting in hopes of successful and rewarding licensing. We would recommend against filing on the Tucker, Greene and Murrenhoff separation process."

A great model: the US DOE Isotope Program

Welcome to the NIDC!

The **National Isotope Development Center (NIDC)** interfaces with the isotope user community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the <u>U.S. Department of Energy Isotope</u> <u>Program</u> within the <u>Office of Nuclear Physics</u> in the <u>Office of Science</u>.

PRISMAS-MAP: improved access to emerging medical radioisotopes

Life, the Universe and Everything

the Universe: nucleosynthesis

Branching points: example at A=147/148

Neutron capture at s-process branching points

Results for ¹⁷¹Tm(n, γ) measured at n_TOF-EAR1

C. Guerrero et al. ND-2016.

¹⁴⁷Pm(n,γ)^{148g,m}Pm MACS at SARAF-LiLiT

C. Guerrero et al. Phys Lett B 2019;797:134809.

¹⁶³Ho as part of branching at A=163

¹⁶³Dy stable, but β^- (47 d) to ¹⁶³Ho when fully ionized (stellar plasma)</sup> Equilibrium abundance of ¹⁶³Ho (from ¹⁶³Dy) produces ¹⁶⁴Ho via (n, γ). The equilibrium abundance of ¹⁶³Ho is determined by the temperature and electron density in the star.

M. Jung et al., Phys Rev Lett 1992;69:2164.

¹⁶³Ho for Neutrino Mass Measurements

L. Gastaldo et al. Eur Phys J Spec Top 2017;226:1623.

¹⁶³Ho for Neutrino Mass Measurements

and Everything

The gap in Mendeleev's table

1 H				Un Un Un	certai certai certai certai	nty < 0 nty 0.1 nty 1 nty 10	0.1 μe 1 - 1.0 - 10 μα) - 100	eV μeV eV μeV		Educati Cu	Unite onal, Sci iltural Or	ed Nation entific ar ganizatio	ns In of on of	019 YPI ternation the Peri Chemic	nal Year odic Tab al Eleme	de ents	2 He
3 Li	4 Be			Un Un	Uncertainty 0.1 - 1 meV Uncertainty 10 - 200 meV									7 N	8 O	9 F	10 Ne
11 Na	12 Mg			No	exper	rimen	tal val	lue				13 Al	14 <mark>Si</mark>	15 P	16 S	17 <mark>CI</mark>	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	41 42 43 44 45 46 47 48								50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Nb Mo Tc Ru Rh <mark>Pd Ag</mark> Cd								Sn	Sb	Te		Xe
55	56	57	72	73	73 74 75 76 77 78 79 80									83	84	85	86
Cs	Ba	La	Hf	Ta	a W Re Os Ir Pt Au Hg									Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cp	Nh	FI	Mc	Lv	Ts	Og

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Resonance ionisation spectroscopy of Pm I

Filling the gap in Mendeleev's table

1 H				Une Une Une	certai certai certai certai	nty <0 nty 0. nty 1 ∙ nty 10	0.1 μe 1 - 1.0 - 10 μ) - 100	eV μeV eV μeV		Educati Cu	Unite Onal, Sci ultural Or	ed Na ientific ganiza	tions	s In of	019 YPI ternation the Peri Chemic	nal Year odic Tab al Eleme	le ents	² He
3 Li	4 Be			Un Un	certai certai	nty 0. [.] ntv 10	1 - 1 n) - 200	neV) meV				В	5	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg			No	expe	rimen	tal va	lue				, AI	13	14 Si	15 P	16 S	17 CI	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	;	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga		Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	ہ	49	⁵⁰	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	(Sn	Sb	Te		Xe
55	56	57	72	73	74	75	76	77	78	79	80	а	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	ТІ		Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	1 [.]	13	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cp	Nh		FI	Mc	Lv	Ts	Og

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
С	e	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Т	ĥ	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The highest neutron flux in the European Union

1.5-10¹⁵ n.cm⁻²s⁻¹

Neutron irradiation positions in EU + EFTA

The diameter of the circles is proportional to the thermal neutron flux in the irradiation positions.

ILL: more than simply neutron scattering

Medical applications Physics applications