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CBM – A Big Data-Producer
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Computing in CBM

CBM Computing has to provide the software and related tools 
required to

• operate the experiment
– configuration, control, DAQ, online data processing, data storage

• analyse data
– reconstruction, PID, data access

• simulate the detector setup
– detectors, electronics, data acquisition
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That‘s generic. So, 
what‘s particular for 

CBM?



Rare Observables
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Model predictions of particle multiplicities ( x branching ratio) 
(central Au+Au, 25A GeV)

• Some of the (most interesting) 
probes are extremely rare.

• Decent measurement in 
reasonable time necessitates 
high interaction rates.

• Current heavy-ion experiments 
run with very moderate rates 
(100 Hz - several kHz).

• CBM targets for 10 MHz



CBM in the experimental landscape
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Uniqueness of CBM: very 
high rate capability

SIS300

Comes with huge 
challenges in terms of:
• Speed and radiation 

hardness of detectors 
and read-out 
electronics

• Data processing on- and 
offline

x 107/s !



Data Rates
• Raw data event size: 100 kB / min. bias event (Au+Au)
• At 10 MHz event rate: raw data rate 1 TB/s

• Archival rate:
– technologically possible are rates of 100 GB/s and above
– limiting factor are the storage costs
– typical runtime scenario 2 effective months / year (5 x 106 s)
– At 1 GB/s: gives a storage volume of 5 PB/year

We aim at an data archival rate of a few GB/s, meaning that the raw 
data volume has to be suppressed online by factors 300 - 1000.
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Selecting Data Online
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• Some (not all) of the rare probes 
have a complex signature. 
Example: Ω → Λ𝐾𝐾+ → 𝑝𝑝𝜋𝜋−𝐾𝐾+

• In the background of several 
hundreds of charged tracks

• No simple primitive to be 
implemented in trigger logic



Selecting Data Online
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• Selection requires reconstruction 
of all tracks plus combinatorial 
search for two decay vertices: 
typical software task

• Offline performance for Omega: 
S/B ~1

• If realisable online: excellent 
software trigger

CBM simulation, central Au+Au, 10A GeV

• Similar argument for many topology-based observables (hyper-nuclei, 
exotic strange objects, charm)

• Simpler patterns e.g. for lepton pairs (J/ψ or low-mass)

• R/O design must be based on the most challenging case



DAQ and Trigger Concept
• No hardware trigger at all
• Continuous readout by 

autonomous FEE
• FEE sends data message on 

each signal above threshold 
(“self-triggered”)

• Hit message come with a time 
stamp; readout system is 
synchronised by a central clock

• DAQ aggregates messages 
based on their time stamp into 
“time slices”

• Time slices are delivered to 
the online computing farm 
(FLES)

• Decision on data selection is 
done in the FLES (in software)
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Triggered and Free-Running Readout
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Hardware triggers: snapshots of the detectors

A trigger-less readout: a movie of the detector



Advantages
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• no latency issues; the system is limited by throughput
• no buffers on FEE ASICS (inside radiation zone) needed
• data selection is shifted to software

– in principle, everything which is usually done in the offline analysis can be implemented for 
online data selection

– very flexible: easy to switch between triggers, to use different triggers in parallel
– assessing the trigger efficiency is straightforward: no emulation of trigger logic needed

So, why was it not done before?
• Requires an online compute farm powerful enough to process the entire data 

stream
• Throughput is defined by the size of the compute farm and the speed of the 

algorithms.
• CBM estimate: equivalent to ~105 CPU cores needed
• Some years ago, this was the entire LHCgrid
• Nowadays (let alone in some years), feasible to finance and to host close to 

the experiment



Issues of a Trigger-less System
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• Noise from detectors and electronics
– tight threshold in order to suppress the contribution of noise to the total data rate
– good signal-to-noise ratios in detectors are needed in order not to lose signals

M.b. event rate 10 MHz 1 MHz 100 kHz 10 kHz

Threshold / noise = 3 40 % 86 % 98 % 99.8 %

Threshold / noise = 3.5 11 % 55 % 92 % 99.2 %

Threshold / noise = 4 2 % 15 % 65 % 95 %

Example: fraction of noise from the STS

• No events given to software
– Unlike in conventional HLTs, where events are build before by DAQ
– Online reconstruction starts from time-sorted data stream
– Algorithms have to take into account time coordinate (“4D reconstruction”)



Read-out Scheme
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Online Data Flow
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Readout Scheme
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Towards the Final System
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Transition to CRI mid-2019



FLES Architecture
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FLES Data Management
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Data Transport
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Time Slice: Interface to Online Reconstruction
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Real-Time Reconstruction
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• In our concept, the task of online data selection is shifted from electronic 
engineering to software engineering.

• For a given event / data rate, the speed of the algorithms determines the 
required size of the online compute farm.

• For a given financial budget / size of the online farm, the speed of the 
algorithms determine the physics output of the experiment.

• High-performance online software is a pre-requisite for the successful 
operation of CBM.
– Make optimal use of available parallel computer architectures: many-core, GPU, 

accelerators

– Be flexible to upcoming new architectures

• Parallelism is the key word
– Data-level parallelism: one time slice per compute node

– Task-level and data-level parallelism within time slice



Track Finding
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• Usually, the most compute-intensive task in reconstruction

• Approach: Cellular Automaton, operating on time-ordered stream of 
detector hits (no event association)

track finder

• After track finding, events can be defined as time-clusters of tracks



CA track finder: performance and scalability
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Good scaling behaviour: well 
suited for many-core systems

High efficiency for primary 
tracks
Rate effects become visible 
above 1 MHz interaction rate



Another Example: Ring Finding in the RICH
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Cherenkov light emitted by electrons in 
the radiator is mirrored and  focused 
into rings onto the photodetector 
plane.

Problems:

•High hit / ring density

•Overlapping rings

•Ring distortions

Event Display



Particle Reconstruction in Real-Time
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KFParticleFinder: Simultaneous access to multitude of particles
Real-time reconstruction allows online selection of rare probes.



Example: Simple Process Graph (STS + TOF)
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Data Processing Framework
• Shortcoming of the current framework: linear task queue, no 

concurrency features -> not well suited for online data processing
• Moving to message-queue-based system (FairMQ); intra-node and inter-

node data transport possible
• First deployment (proof-of-principle): online monitoring for mCBM
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Simulation Software
• Detector geometry model

– according to current technical planning
– comprising all relevant contributors to the material budget
– format: TGeo
– subject to continuous adjustments / improvements
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Events and Time Slices
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Simulation Software

• Detector response model:
– analogue response in sensitive detector elements
– digital response (R/O ASIC): free-streaming

• model timing response
• interference between different events

– thermal noise

• DAQ emulation (time-slice building)
• Goes far beyond conventional event-by-event simulation

– framework extensions implemented; full data stream can be simulated
• not yet in real (compressed) raw data format, but logically equivalent
• combining different sources at different rates (events, beam)
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Example: STS
• energy loss fluctuations (Urban 

model)
• drift to readout surface in bias 

field
• Lorentz shift
• Thermal diffusion
• Collection on read-out strips
• Cross-talk

Simulated STS data (w/o thermal shielding), 
Au+Au @ 10A GeV, beam rate 109/s, event rate 107/s



Summary
• The online computing challenge for CBM (and PANDA) 

originates from the necessity to be selective w.r.t very rare 
observable in real-time.

• The offline challenge is to efficiently analyse a huge amount 
of data by a geographically diverse scientific community.

• Both challenges require the development and deployment of 
forefront computing technologies.
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You Like Challenges?

Then CBM Computing might be of 
interest for you….welcome!
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