

Guwahati, India September 28, 2019

Christian Sturm, GSI for the CBM Collaboration

<u>Outline</u>

CBM physics program

The CBM experiment

The full system test-setup mCBM@SIS18

Compressed baryonic matter

Neutron stars

Temperature T < 20 MeV

Core density $\rho < 10 \rho_0$

Lifetime Δt ~ infinity

Crab pulsar T = 33.4 ms, Mass $\sim 1.5 M_{\odot}$

Neutron star merger

Temperature T < 70 MeV

Density $\rho < 2 - 6 \rho_0$

Reaction time Δt ~ 10 ms

numerical simulation, GW170817

T. Dietrich (Max Planck Institute for Gravitational Physics)

Relativistic nucleus-nucleus collisions at SIS100

Temperature T < 120 MeV

Density $\rho < 8\rho_0$

Reaction time $\Delta t \sim 10^{-23} \text{ s}$

Exploring the QCD phase diagram

in the **laboratory**: nucleus-nucleus collisions

Exploring the QCD phase diagram

At very high temperature:

N of baryons ≈ N of antibaryons → situation similar to early universe Lattice QCD: crossover transition Hadronic Matter → Quark-Gluon Plasma

Experiments:

ALICE, ATLAS and CMS at LHC & STAR and PHENIX at RHIC

Exploring the QCD phase diagram

At high baryon density:

N of baryons >> N of antibaryons, densities like in neutron star cores

- → Lattice QCD not (yet) applicable
- → Models predict first order phase transition with mixed or exotic phases

Experiments:

BES at RHIC, NA61 at CERN SPS, NICA at JINR and CBM at FAIR

Relativistic nucleus-nucleus collision U + U 23 GeV per nucleon

Messengers

CBM physics case and observables

New phases of strongly-interacting matter?

- > excitation function and flow of lepton pairs
- \triangleright excitation function and flow of strangeness $(K, \Lambda, \Sigma, \Xi, \Omega)$

Deconfinement phase transition at high ρ_B ?

- \triangleright excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- anomalouus charmonium suppression
- > event-by-event fluctuations of conserved quantities

Onset of chiral symmetry restoration at high ρ_B ?

 \triangleright in-medium modifications of hadrons $(\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-))$

Strange matter

- ➤ (double-) lambda hypernuclei
- > strange meta-stable objects (e.g. strange dibaryons)

The equation-of-state at neutron star core densities

- > collective flow of hadrons
- > particle production at threshold energies (multi-strange hyperons)

Ouark-Gluon Plasma

Introducing azimuthal particle emission

Fourier expansion of the dN/dφ distribution:

$$\frac{dN}{d\phi} \sim [1 + 2v_1 \cdot \cos(\phi) + 2v_2 \cdot \cos(2\phi)]$$

the coefficients quantify:

- v₁ the in-plane and
- v₂ the elliptic emission pattern

named as well as: v₁ directed flow, v₂ elliptic flow

Introducing the nuclear equation-of-state

$$\begin{split} \varepsilon(\rho,T) &= \varepsilon_T(\rho,T) + \varepsilon_C(\rho,T=0) + \varepsilon_0 \\ (\varepsilon &= E/A) \quad \text{thermal} \quad \text{compressional ground state energy} \end{split}$$

thermodynamical concept

nuclear equation-of-state at T = 0: the "compressional"

$$E/A\left(
ho,T=0
ight) \ = \ rac{1}{
ho}\int U\left(
ho
ight)d
ho \qquad U(
ho)$$
: density dependent local potential

curvature at saturation density: compression modulus

$$\kappa = \left(9\rho^2 \frac{\partial^2 E/A(\rho, T=0)}{\partial \rho^2}\right)_{\rho=\rho_0}$$

Introducing the nuclear equation-of-state

example for an effective NN-Potential $U(\rho) = \alpha \left(\frac{\rho}{\rho_0}\right) + \beta \left(\frac{\rho}{\rho_0}\right)^{\gamma}$ (Skyrme type)

constraints for the parameters of the potential:

$$\varepsilon(\rho = \rho_0, T = 0) = -16 MeV$$

$$\left(\frac{\partial \varepsilon(\rho, T=0)}{\partial \rho}\right)_{\rho=\rho_0} = 0$$

	α [MeV]	β [MeV]	γ
$\kappa = 380 \text{ MeV}$	-124	70.5	2
κ = 200 MeV	-356	303	7/6

$$\kappa = \left(9\rho^2 \frac{\partial^2 E/A(\rho, T=0)}{\partial \rho^2}\right)_{\rho=\rho_0}$$
 compression modulus

Nuclear equation-of-state at high (net) baryon densities

Experiment: CS et al., Phys. Rev. Lett. 86 (2001) 39 Theory: RQMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

Nuclear equation-of-state at high (net) baryon densities

P. Danielewicz et al., Science 298 (2002) 1592

consistent picture at SIS18 energies (1.5 < ρ / ρ_0 < 3.0)

inconclusive at AGS energies

Nuclear equation-of-state at the highest (net) baryon densities

DBHF: E. N. E. van Dalen, C. Fuchs, A. Faessler EPJ. A 31,29 (2007)

F. Weber, J.Phys. G27 (2001) 465 equation-of-state at neutron star core densities?

- \rightarrow (sub-threshold) production of $\Omega^+(\bar{s}\bar{s}\bar{s})$ at FAIR energies ?
 - refined to the high-density phase
 - small final-state interaction

Strange matter - hypernuclei

Strange matter – predictions at FAIR energies

Statistical hadronisation model:

production of light nuclei and hypernuclei

- A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker,
- B. Phys. Lett. B697 (2011) 203

Strange matter

double hypernuclei

strange dibaryon

Search for strange matter in the form of strange dibaryons and heavy multi-strange short-lived objects

Production in nucleus-nucleus collisions via coalescence of hyperons and light nuclei

- → existence and yield of (exotic) strange objects?
- $\rightarrow \Lambda\Lambda$, N Λ interactions?
- → remnants of dense (chirally restored?) matter?

Strangeness

Multi-strange (anti-) hyperons at FAIR energies

Prediction by microscopic transport calculations:

PHSD: transport code with partonic phase ($\epsilon > 1 \text{ GeV/fm}^3$)

HSD: hadronic transport code

I. Vassiliev, E. Bratkovskaya, preliminary results

e⁺e⁻ pairs (dileptons) – penetrating probes

Sources of e⁺e⁻ pairs (dileptons)

invariant mass

$$M_{ee} = \sqrt{p_{e+}p_{e-}} \sin \frac{\theta_{e+e-}}{2}$$

	mass [MeV/c²]	cτ [fm]	dominating decay	e [⁺] e⁻ branching ratio
ρ	768	1.3	ππ	4.4 x 10 ⁻⁵
ω	782	23.4	$\pi^{^{+}}\!\pi^{^{-}}\!\pi^0$	7.2 x 10 ⁻⁵
Ф	1019	44.4	K⁺K⁻	3.1 x 10 ⁻⁴

 $E_{thr,lab}$ (NN)

1.7 GeV

1.8 GeV

2.6 GeV

Dileptons in **nucleus-nucleus** collisions at SIS18

HADES, Nature Physics, 2019, https://doi.org/10.1038/s41567-019-0583-8

$$M_{ee} = \sqrt{p_{e+}p_{e-}} \sin \frac{g_{e+e-}}{2}$$

Deconfinement phase transition at high μ_B ?

simulation

within CBM acceptance

$$M_{ee} = \sqrt{p_{e+}p_{e-}} \sin \frac{9_{e+e-}}{2}$$

Deconfinement phase transition at high μ_B ?

measurement of the di-lepton invariant-mass distribution between 1 and 2.5 GeV/c² for different beam energies

Summary: unique measurements with CBM at day 1

Di-electron measurement Full performance, (uses MVD, limited to 100 kHz)

Au+Au, 8A GeV,

Hyperon measurements, e.g. Au+Au at 10A GeV:

Hypernuclei measurement, e.g. Au + Au at 10A GeV

Di-muon

LM measurement at 8A GeV

= complementary measurement to e⁺e⁻ with different systematic errors

Experimental challenge?

Rare probes → extremely high interaction rates required!

Experiments exploring dense QCD matter: rate capabilities

(Au ions)				
E_{kin}^{lab} [A·GeV]	$\sqrt{S_{NN}}$ [GeV]			
2	2.7			
11	4.9			
14 (Ca @ SIS100) 29 (p @ SIS100)	5.5 7.6			
phase 2 (SIS300):				
30	7.7			
35	8.3			
44 (Ca @ SIS300) 89 (p @ SIS300)	9.3 13.0			

FAIR energies

CBM experimental challenges

Simulation Au+Au at 25 AGeV UrQMD+GEANT4: 160 p, 400 π⁺, 400 π⁻, 44 K⁺, 13 K⁻

Unprecedented collision rates: 10⁵ - 10⁷ Au+Au collisions / sec

- → fast and radiation hard detectors
- → free-streaming read-out electronics
- → high speed data acquisition and high performance computer farm for online event reconstruction and selection
- → 4-D event reconstruction

The Facility for Antiproton and Ion Research

The Silicon Tracking System (STS) inside the s.c. Dipole Magnet

superconducting dipole magnet

Particle identification

Status of the experiment preparation

#	Project	TDR Status
1	Magnet	approved
2	STS	approved
3	RICH	approved
4	TOF	approved
5	MuCh	approved
6	HADES ECAL	approved
7	PSD	approved
8	MVD	submission in 2020
9	DAQ/FLES	submission in 2023
10	TRD	approved
11	ECAL	submission in 2020

The high-performance free-streaming DAQ system of CBM

Guwahati Pre-Meeting on the FAIR Project, Sept. 28, 2019

software based event selection

C.Sturm, GSI

CBM data transport and processing

FPGA: Field Programmable Gate Array

Acronyms

DPB: Data Processing Board

TFC: Timing and Fast Control Syst.

FLES: First Level Event Selector

GBTx: CERN rad.-hard interface ASIC

μSlice (μS): self contained data block for a subset of the experiment, minimal size depends on degree of data time sorting

Timeslice: collection of µS, self contained data block for the full experiment and a given time interval, includes overlap to avoid edge losses

mCBM@SIS18

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES inside the GreenITCube
- online event reconstruction and selection.
- up to 10 MHz collision rate
- first successful commissioning with beam in Dec. 2018 and March 2019

mCBM @ SIS18 facility

mCBM setup at March 2019

mSTS

mounting

Double-sided silicon micro strip sensor (58 µm pitch, 300 µm thickness)

mMUCH

Gas Electron Multiplier (GEM)

The CBM Muon Chamber (MuCh) System

NA60 In + In collisions at 158 AGeV (SPS)

µ+µ⁻ pairs

at FAIR energies: µ pairs @ CBM contribution by India

"active absorber system"

1st and 2nd stations: GEM

3rd and 4th stations: RPCs (?)

mTRD

backside

node
chode
Drift

Entrance window

mTOF

MRPCs: amplification by multiple gaps (2 x 5 gaps)

configuration: double stack triple stack

1600 channels:

32(channels) * 2(sides) * 5(MRPCs) * 5(modules)

The mRICH subsystem

Multi Anode Photo Multiplier Tube

6 × 6 H12700 64ch **MAPMT**

aerogel pads

New Hardware

Login Node

- 2x Xeon Gold 6140: 18 cores, 2,3 3,7 GHz
- 192 GB RAM, 2x 2 TB NVMe SSD
- 10 G ethernet uplink to GSI Processing Nodes
- 2x Xeon Gold 6130: 16 cores, 2,1 3,7 GHz
- 192 GB RAM, 2x 2 TB NVMe SSD
- Infiniband HDR (200 Gbit/s)

 Network
- 40 port Infiniband HDR switch
- 4 dual socket HDR HCAs (200 GBit/s)

New mFLES Run Control

- Aim: switch gears to common data taking with a realistic FLES
 - Reproducible data taking, independent of control node
 - Support for multiple operators
 - Use of multiple nodes, timeslice building from EN to PN
- All run parameters are described in a configuration file
 - Configurations are stored as a tag
- Configuration includes:
 - Set of entry and processing nodes
 - FLIB parameters
 - Timeslice building parameters
 - Archival parameters
- Globally installed on mFLES cluster

very preliminary results data taken in March 2019

subsystem time offset in the common, synchronized data stream

×10⁶ Rate (Hz) 0.3172 0.2 0.4 0.6 Time (s)

March 30, 2019: beam intensity ≈ 10⁸ Ag ions / s T0 saturation ? radiation damage ?

2mm width each

March 2019 : 10^8 Ag ions/s (1.58 AGeV) + Au (2.5mm) \rightarrow 10 MHz collision rate

total data rate online

2.5 GB/s (max.)

mCBM benchmark observable: A reconstruction

Simulation input: 108 UrQMD events, min. bias

mCBM data taking

2018 → 2019	development & commissioning data transport, data analysis, detector tests
2019	approaching full performance
→	subsystems completed, high-rate data transport / processing
2020	→ online reconstruction and selection

requested beamtime was fully granted by GSI/FAIR G-PAC

2021	Λ reconstruction production runs benchmark coll. systems:
	Ni+Ni 1.93AGeV & Au+Au 1.24AGeV
2022	2 nd benchmark run ∧ reconstruction in Ni+Ni and Au+Au collisions at various projectile energies → ∧ production excitation function

proposal to be submitted in 2019/20

Summary – CBM Program

Open questions at high net baryon densities

- Phase transition from hadronic matter to quarkyonic or partonic matter?
- Chiral phase transition? Chiral restoration?
- In-medium modification of hadrons?
- Nuclear equation-of-state at neutron star core densities?

Baryon Chemical Potential $\mu_{\rm B}$

→ substantial discovery potential with CBM at FAIR

Extremely rare probes

→ CBM high-tec developments to achieve unprecedented collision rates (10 MHz)

Commissioning of a precursor experiment, full-system test mCBM@SIS18 ("mini-CBM")

has started → planned program until 2023, potential physics results

CBM - FAIR Phase 0 projects (2018 - 2022)

- Install, commission and use 430 out of 1100 CBM RICH multi-anode photo-multipliers (MAPMT) including FEE in HADES RICH photon detector
- Install, commission and use 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)

4. Install, commission and use the Project Spectator Detector at the BM@N experiment

CBM Collaboration: 55 institutions, 470 members

China:

CCNU Wuhan Tsinghua Univ. **USTC** Hefei CTGU Yichang Chongqing Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague

France:

IPHC Strasbourg

Germany:

71B Berlin

Darmstadt TU **FAIR** Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI Darmstadt** Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI **HZ** Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ.

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi **VECC Kolkata IOP Bhubaneswar IIT Kharagpur** IIT Indore Gauhati Univ.

Korea:

Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Warsaw Univ. Warsaw TU

Romania:

NIPNF Bucharest Univ. Bucharest

Hungary:

KFKI Budapest Fötvös Univ.

Russia:

IHFP Protvino INR Troitzk **ITFP Moscow** Kurchatov Inst., Moscow VBLHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Researcha

33th CBM Collaboration meeting at GSI, April 2019

