

NUSTAR Collaboration Report

Wolfram Korten IRFU - CEA Paris-Saclay

Joint ECE-ECSG Meeting

Darmstadt, November 4-5, 2019

Germany	

India

The NUSTAR experiments

	Super- FRS	HISPEC/ DESPEC	LASPE	C MATS	R3B	ILIMA	SHE	ELISE	EXL
	NAME OF TAXABLE		Cent ors Cater tax Lare tax				M		õ
	Super-FRS	HISPEC/DESPEC	LASPEC	MATS	R3B	ILIMA	SHE	ELISe	EXL
Masses		Q-values, isomers		dressed ions, highest precision	unbound nuclei	bare ions, mapping study	precision mass of SHEs		
Half-lives	psns-range	ground state and isomers μss			resonance width, decay up to 100ns	bare ions, ms…years	µsdays		
Matter radii	interaction x- section				interaction cross sections				matter densitiy distribution
Charge radii	charge-changing cross sections		mean square radii		charge-changing cross sections			charge density distribution	
Single- particle structure	high resolution, angular momentum	high-resolution particle and γ-ray spectroscopy	magnetic moments, nucl. spins	evolution of shell str., pairing int., valence nucl.	quasi-free knockout, short-range & tensor correlations	evolution of shell closures, pairing corr.	shell structure of SHEs		low momentum transfers
Collective behavior		electromagnetic transition strength	quadrupole moments	halo structure	dipole response, fission	changes in deformation		electromagnetic transition strength	monopole resonance
EoS					polarizability, neutron skin			neutron skin	neutron skin, compressibility
Exotic Systems	bound mesons, hypernuclei, nucleon resonances	rare and exotic e.m. and particle decays			n-rich hypernuclei	exotic decay modes			

NUSTAR - The Project

PSP code	Super-FRS	RIB production, separation, and identification
1.2.2	HISPEC/ DESPEC	In-beam γ -spectroscopy at low and intermediate energy, n-decay, high-resolution γ -, β -, α -, p-, spectroscopy
1.2.3	MATS	In-trap mass measurements and decay studies
1.2.4	LaSpec	Laser spectroscopy
1.2.5	R ³ B	Kinematical complete reactions with relativistic radioactive beams
1.2.6	ILIMA	Large-scale scans of mass and lifetimes of nuclei in ground and isomeric states
1.2.10	Super-FRS	High-resolution spectrometer experiments (see talk by T. Grahn)
1.2.11	SHE	Synthesis and study of super-heavy elements

The NUSTAR collaboration

NUSTAR Collaboration

NUSTAR Council (NC) Institutes (secured financial/manpower contribution)

Collaboration Committee (CC)

NUSTAR Experiments

(representatives of the 10 exp. collaborations)

Board of Representatives (BR)

(Five members elected by Council and TC/RC ex officio)

Chair: NUSTAR Spokesperson

Technical Board (TB)

Chair: Technical Coordinator

Resource Board (RB)

Chair: Resource Coordinator

- General Conditions for Experiments
 - Draft version submitted to FAIR management in February 2018
 - Slightly modified version (April 2018) sent to AFC for discussion
 - Approved at the AFC meeting in May 2019
- MoU
 - Similar structure of the MoU for all FAIR experiments
 - NUSTAR MoU compared to the one from CBM and PANDA:
 - Slightly re-structure document (new ordering of articles)
 - Adapt annexes if needed
 - MoU for CBM presented as blueprint at the last FAIR-RRB meeting
 - Updating NUSTAR organizational structures and procedures
 - Presentation to NUSTAR Council in March 2020
 - NUSTAR Common Fund of ~1M€ (see presentation by A. Herlert)

FAIR start version and NUSTAR experiments

The Super-FRS facility for NUSTAR@FAIR FAIR

NUSTAR Early Start Version

in particular using ESR and Cryring

FAIR

News from the NUSTAR experiments

R3B set-up in a nutshell

Complete kinematics, fixed target experiment to study Reactions with Relativistic Radioactive Beams with high acceptance, resolution and efficiency

2019 runs

- Only primary beams (¹²C, ¹⁶O, ¹²⁴Sn)
- Microspill structure (eng. Run)

Equipment commissioning

- First operation of GLAD
- Gamma detection tests with CALIFA Demonstrator
- Large size fiber detectors (astrophysics, more to come

Experiments

S454 Heil (2019)

- Studying the astrophysical reaction rate of ¹²C(α,γ) O via Coulomb dissociation of ¹⁶O into He and ¹²C
 S473 Aumann (2019)
- Constraining energy-density functionals and the densitydependence of the symmetry energy

2020 runs

- Secondary fragments FRS
- Heavier beams (⁴⁰Ar, ²³⁸U)

Equipment commissioning and physics program

- LH2 target
- CALIFA (24-90° polar)
 - (p,2p) initial
- Gas Tracking detectors (SOFIA)
 - fission studies

2021 and beyond

- Si tracker
 - e.g. Sorlin et al., (p,2p) at full performance)
- NeuLAND upgrade to 15(30) double planes
 - EOS, 4n correlations
- CALIFA with front cap
 - (p,2p) (p,pn) at full performance
- Proton Arm Spectrometer (PAS)
 - proton rich nuclei
- Active Target ACTAF (charge distributions)
- TPC

First R³B experiment: Coulomb dissociation of ¹⁶O

Advantages:

- high intensity (stable) ¹⁶O (10⁹ s⁻¹)
- large number of virtual photons
- large (γ, α) cross section
- High speed tracking (several MHz) with two particles
- Direct comparison to direct measurements using E1 data, proof of principle via R-Matrix decomposition.
- CD studies with E1/E2, proof of principle

ToF wall

Fiber detectors

High-resolution in-flight gamma-ray spectroscopy using AGATA following secondary nuclear reactions induced by radioactive ion beams from E~100 MeV/u to 1 GeV/u

New isotopes and their properties Joint DeSpec and Super FRS experiments

N=82

- Ground state properties (halflife, masses, radii) and spectroscopic studies (β-decay, isomers)
- First spectroscopic information for the nucleosynthesis of heavy nuclei
 (for RIB yields as low as one ion per hour)
- Evolution of the shell structure and exotic nuclear shapes near the limits of nuclear existence

Spectroscopy & lifetimes of neutron-rich nuclei close to N=126

S452: The Oblate-Prolate Shape Transition around A~190 (2020) **S460:** Investigation of 220-A-230 Po-Fr nuclei lying in the south-east frontier of the A~225 island of octupole deformation (2020) **S468:** Search for new neutron-rich isotopes and exploratory studies in the element range from Tb to Re (2020; in collaboration with Super-FRS experiments) **S450:** Study of *N*=126 nuclei: isomeric and beta decays in ²⁰²Os and ²⁰³Ir (2021)

DESPEC PHASE-0 INSTALLED AND UNDERGOING COMMISSIONING (in-house and outside GSI)

AIDA

decay detector

High-resolution spectrometer experiments at the border line of nuclear, atomic and hadron physics

(Super-)FRS as multiple-stage magnetic system (separator, analyser, spectrometer, energy buncher) combined with ancillary detectors, e.g. with:

The Super-FRS Low-Energy Branch

The Cryogenic Stopping Cell for the LEB

	Prototype CSC	Design Goals LEB CSC
Areal density (He)	6 mg/cm ²	2040 mg/cm ²
Extraction time	25 ms	5…10 ms
Rate capability	10 ⁴ /s	10 ⁷ /s

FRS Ion Catcher: Proof-of-principle for FAIR Phase-0

Mass measurement performance required for **S468** (isotope search)

- Mass resolving power > 400,000
- Mass accuracy down to 6×10⁻⁸
- Resolution of ground states and low-lying isomers
- Measurement of nuclides with
 - sub- $\mu barn$ cross sections
- down to 17.9 ms half-life
- down to 11 events only

S. Ayet et al, PRC 99 (2019) 064313

Branching

ratios:

FRS Ion Catcher: Proof-of-principle for FAIR Phase-0

S472 (β -delayed neutron branching): Simultaneous measurement of mass, half-life and branching ratio for ^{119m2}Sb

ß-

0

γ

1

ß+

0

S475 (multi-nucleon transfer): MNT experiment at IGISOL / Jyväskylä

T. Dickel, A. Kankainen et al.

NUSTAR collaboration report - November 5, 2019

I. Miskun et al., EPJA 55 (2019) 148

MATS – Programme for Phase-0 and Day-1 FAIF

FAIR phase 0:

- operation of MATS prototype TRIGA-TRAP at TRIGA Mainz for technical and methodical developments:
 - single-ion mass spectrometry with cryogenic trapping systems
 - optimization of novel phase-imaging technique (PI-ICR) for shortlived nuclides and low-lying isomers
- construction of RFQ system at JYFL
- on-line experiments at different laboratories within the collaboration: ISOLTRAP, JYFLTRAP, SHIPTRAP ...

FAIR phase 1:

- Experiments on neutron-rich nuclides relevant for 3rd r-process peak
- Experiments on selected neutron-rich isotopes, e.g. Zr isotopes

LaSpec Phase-0 and Day 1 program on refractory elements

Optical spectroscopy enters the transitional region

Collaboration between JYFL, Liverpool, Manchester, GANIL, ISOLDE and TU Darmstadt. First optical spectroscopy of radioactive isotopes of Pd; neutron-rich region; transitional elements challenging to produce at ISOL facilities.

Optical resonance fluorescence spectra of even-A isotopes of Pd

Recent news from ILIMA at the ESR

Nustar Experiments

Document Type:

Document Number

F-DS-NUE-en-

ILIMA Phase-0 program: ²⁰⁵TI bound-state beta decay

- New prototype Schottky detector installed in ESR
 - Variable resonance frequency: 408-416 MHz
 - Variable Q value: approx. 500-3000
 - High sensitivity
- Specifications of new Schottky detector for CR completed
- Heavy-ion detector
 - Si-CsI telescope (CsISiPHOS) installed in ESR pocket chamber

Superheavy element research at NUSTAR and FAIR/GSI

Recent highlights from the SHE collaboration FAIR

D. Rudolph et al., PRL 2013; J.M. Gates et al., PRC 2015 D. Rudolph et al., in preparation High precision direct mass measurements

- Two-week beamtime campaign in summer 2018
- new or improved mass values for ^{251,251m,254,254m}No and ^{254,254m,255m,255,256}Lr
- pinned down nuclear isomers with supreme resolving power of novel PI-ICR technique
- ^{257g,m}Rf (Z=104) measurement at a rate of about
 1 event per day

 35 keV isomer resolved

O. Kaleja, F. Giacoppo et al. (SHIPTRAP collaboration)

Recent highlights from the SHE collaboration FAIR

Chemical study of element 114, flerovium

- Heaviest element studied chemically
- Three beam-time campaigns (2009-2015)
- 8 decay chains from 2.5 months UNILAC beamtime
- Studies of interaction of FI atoms with Au surface reveal FI to be a noble, volatile metal. Binds strongly at grain boundaries, but not otherwise

Exp.: A. Yakushev, L. Lens et al. (**TASCA** collaboration) Theory: V. Pershina et al., and also others

Laser spectroscopy yields information about the size and shape of No isotopes

proton distribution

- Diff. nuclear charge radii and nuclear moments
- Good agreement with nuclear DFT calculations

M. Laatiaoui *et al.*, Nature 538, 495 (2016) S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503

Towards NUSTAR Day-1

NUSTAR funding and management

- Three TDRs are under evaluation by the ECE.
- Final four TDRs are still under preparation for Day-1 (3 R3B, LEB).
- No components are on the critical path.
- Increased manpower resources will be required to keep the schedule.

- Most NUSTAR equipment is already ready for experiments and being commissioned at GSI or elsewhere
- Very few critical items (will be discussed in the following talks)
- All NUSTAR experiments will be ready with their principal equipment for Day-1 experiments, that is as soon as
 - First beams from the Super-FRS will become available
- NUSTAR will be world-wide competitive due to the unique properties of the accelerators (energy, intensity), the Super-FRS (transmission, rejection, resolution), the storage rings and other new instrumentation