Faul Tolerant Local and Monitoring Control Board

Research group Prof. Udo Kebschull José Antonio Lucio Martínez

Infrastructure and Computer Systems in Data Processing Goethe Universität Frankfurt

Status of the hardware

- FTLMC V1 is operational
 - I2C
 - Ethernet
 - GPIOs
 - RS-232
- FTLMV V1 Traces errors
 - CAN (Still usable)
 - RS-485 (Still usable)
- Traces errors corrected in FTLMC V2

Status of the hardware

	FTLMC V1			FTLMC V2		
Manufacturer	Name	Job	Result	Name	Job	Result
	Contag	PCB & assembly	Good	SAFA2000	РСВ	untested
				Berentzen	assembly	
Design errors	CAN and RS485 traces error			Not found yet		
Status	3 boards operating			18 pcb's, not assembled yet		

PCB Tool chain

- FTLMC Layout was made with a Student licensed Altium
- Schematics/PCB review in any computer with Altium license
- The farbication (gerber & pick and place) files
 - can be reviewed in any computer
 - normally used by manufacturer
- Modifications have to be done in schematics and PCB layout Altium

PCB Tool chain

- 11 schematics sheets
 - Power Supply
 - PC104
 - Jtag &RS485
 - 4 x TMS570
 - 2 x Ethernet
 - CAN + RS232
 - SDRAM

PCB Tool chain

- Defines board
 - Layers
 - Shape
 - Size
 - Traces
 - Electric rules
- Fabr. Data:
 - Pick place
 - Gerber
 - Drill

PCB Toolchain

- Made with Altium
 - Panel made from design with Altium layout tool
 - Grooved lines for easy split after assembly
 - 2 x 5 For better stability in assembly
 - Needed if assembly is made separately (not CONTAG)
- Manufacturer needs
 - Layer stack: dielectric and layer thickness (PCB)
 - Panel gerber files (PCB)
 - Pick and place for such panel (assembler)

Top Layer	35µm	Abmessungen/Dimensions	88,59x54,34			
Dielectric	100µm	Lagen/Layer count	10			
Signal Layer 1	35µm	Material	FR4			
Dielectric	100µm	Kunfor/Connor	25um Cu			
Power Plane 3V3	35µm	КиріенСорреі	səµm Cu			
Dielectric	100µm	Oberfläche / Surface	HAL leadfree			
Signal Layer 2	35µm	Lötstopplack / Solder Mask	top + Bottom	green		
Dielectric	100µm	Bestückungsdruck / Silkscreen	top + Bottom	white		
Signal Layer 3	35µm	Zusatzdrucke / Additional Prints	no			
Dielectric	100µm	Via Technology	Standard (PTH)			
Signal Layer 4	35µm	Kantenmetallisierung / Edge	no			
Dielectric	100µm	metalization				
Power Plane 1V2	35µm	Nutzen (Panel)				
Dielectric	100µm	Abmessungen/Dimensions	187,57x282,55			
Signal Layer 5	35µm	Menge/Quantity	10			
Dielectric	100µm					
Ground Plane GND	35µm	Anordnung/Orientation	2x5			
Dielectric	100µm	Nutzenrand/Panel Frame	gerber files include panel drawing			
Bottom Layer	35µm	Nutzentrennung/Panel Separation	V-Cut			

- Cross compiler building tools
 https://github.com/RTEMS/rtems-source-builder
- Board Support Package (BSP) Code that is Board dependent
 - RTEMS official repository supports TMS570 Development kit
 - Changes made for FTLMC
 - Ethernet driver RMII @ 50Mhz instead of MII @ 25Mhz
 - Cortex-R5F instead of Cortex-R4F
 - Larger external memory

• FTLMC BSP's changes implemented with pre-processing directives

```
#ifdef TMS570_LC43X
#define TMS570_I2C1 (*(volatile tms570_i2c_t*)0xFFF7D400)
#define TMS570_I2C2 (*(volatile tms570_i2c_t*)0xFFF7D500)
#define TMS570_IOMM (*(volatile tms570_i0mm_t*)0XFFFF1C00)
#define TMS570_PINMUXOt (*(volatile tms570_pinmux_t*)0xFFFF1D10)
#define TMS570_PINUMXSp (*(volatile tms570_pinmux_20_t*)0xFFFF1F90)
#define TMS570_PINUMXIn (*(volatile tms570_pinmux_20_t*)0xFFFF1E50)
#else
#define TMS570_I2C (*(volatile tms570_i2c_t*)0xFFF7D400)
#define TMS570_I2C (*(volatile tms570_i2c_t*)0xFFF7D400)
#define TMS570_I2C (*(volatile tms570_i2c_t*)0xFFF7D400)
#define TMS570_I0MM (*(volatile tms570_i0mm_t*)0XFFFFEA00)
#endif
```

• OpenOCD (modified for FTLMC) Open Source debugging tool

- Code loaded with blackhawk emulator
 - Used until now for jtag debugging
 - Additional standalone solution needed
- Options for standalone bootloading (BL)
 - Flash with embedded epics binary (done)
 - Ethernet BL, works for binaries < 300kb (to be adapted for EPICS)
 - SPI BL (to be done)
 - CAN BL (to be done)

10-pin ARM Header

- Tested on External SDRAM execution
- Internal non-volatile memory execution \rightarrow to be done
- Only BSP code changed, RTEMS mainline remains as is
- FTLMC BSP available in git repository
 - Ethernet driver is working
 - I2c driver working
 - Pending: CAN-Bus and SPI
- BSD compiled separately in RTEMS 5 => drivers have to be ported

Status of EPICS

- EPICS only supports RTEMS <= 4.10
- Changes to API code needed for 4.11 compatibility

base/src/libCom/osi/os/RTEMS/osdEvent.c base/src/libCom/osi/os/RTEMS/osdMessageQueue.c base/src/libCom/osi/os/RTEMS/osdMutex.c base/src/libCom/osi/os/RTEMS/osdPoolStatus.c base/src/libCom/osi/os/RTEMS/osdSock.h base/src/libCom/osi/os/RTEMS/osdSpin.c base/src/libCom/osi/os/RTEMS/osdThread.c base/src/libCom/osi/os/RTEMS/osdTime.cpp

EPICS adaption example

RTEMS 4.10

(epicsThreadId)semaphore.Core_control.mutex.holder_id

RTEMS 4.11 (epicsThreadId)holder->Object.id

RTEMS 4.10 _Thread_Executing->Wait.return_code == 0

RTEMS 4.11 executing = _Thread_Get_executing(); executing->Wait.return_code == 0

FTLMC V1

EPICS database example

Support for a 6 bit programmable attenuator from an AO record. No custom device support required.

Radiation tolerance studies

- Only the MCU has been tested in beam
- Only SEU's were considered for FTLMC
- Strong magnetic field was not considered for FTLMC V1 and V2
 - A working board was priority
 - Solution tests need to be done beforehand
 - Footprints are included for air-core coils in FTLMC V1-2

Beam test of the Cortex-R (TI-TMS570)

- Exposed MCU directly to beam during: 13 hours
- Beam: 2Gev Protons
 - In spike: 7 x 10⁷
 - in normal extraction: 2 x 10⁸
 - spill: 20s
 - Pause: 10s
- Total detected and corrected SEU's:
 - in Bank A: 718
 - In Bank B: 686
- No unrecoverable errors
- Failure registers continuously monitored
- Database with error time-stamp
- No errors during beam off times detected

Thank you!

