

Activities concerning the PANDA and Prototype Target

PANDA Collaboration Meeting 2019/2 GSI Darmstadt, Germany

Benjamin Hetz WWU Münster

Bundesministerium für Bildung und Forschung Institut für Kernphysik WWU Münster

living.knowledge

Overview

- Information from the 2nd PANDA cluster-jet target at COSY beam time (March 2019)
- Plans for the upcoming 3nd PANDA cluster-jet target at COSY beam time (August 2019)
- Vacuum studies and simulations using Monte Carlo techniques
- Activities concerning the PANDA prototype target

2nd PANDA Target Beam Time March 2019

- Beam energy loss data:
 - Thickness of >2 x 10¹⁵ atoms/cm² at low nozzle temperatures and high pressures
 - Severe gas load problem in beam pipe at this conditions O(10⁻² mbar l/s)
 - Different thicknesses between (5 7) x 10¹⁴ atoms/cm² at nozzle temperatures and pressures at the supercritical/liquid hydrogen regime
 - Gas load in beam pipe at this conditions O(10⁻³ mbar l/s)
- > Correlation of target thickness and residual gas load must be studied in more detail at next beam times

2nd PANDA Target Beam Time March 2019

• Tests with barrier bucket and stochastic cooling:

- Target thicknesses >2 x 10¹⁵ atoms/cm² and 3 GeV/c beam momentum
- 35 % cosy beam losses at 300 s cycle length
 - Defect connections found at stochastic cooling cavity after beam time
 - Similar measurements will be repeated next beam time

2nd PANDA Target Beam Time March 2019

- **Beam quality studies** with reduced thicknesses between (5 7) x 10¹⁴ atoms/cm²
 - After a power failure in Jülich \rightarrow no stable beam conditions at higher thicknesses/lower temperatures
 - Measurements done with barrier bucket and stochastic cooling
 - < 5 % beam losses at 300 s cycle length
 - < 50 % beam losses at 60 minutes cycle
 - ✓ Long cycle times for PANDA achieved
 - ✓ HESR will have more stochastic cooling power than COSY
 - \succ During next COSY beam time improved cooling performance expected \rightarrow less beam loss

2nd ANDA Target Beam Time March 2019

- Vacuum conditions due to cluster evaporation:
 - Measurement procedure:
 - Moving COSY beam over jet target
 - Measure pressure increase profile at WASA IP due to COSY beam heating jet beam
 - \succ No direct visible effect \rightarrow Fluctuations of target are dominating
 - Solve to evaporating clusters much less than current residual gas effects of target
 - Redo measurement with different scan time and target parameters next time
 - Finding better S/B (thickness/residual gas) ratio to give a limit of evaporation effects

3rd PANDA Target Beam Time June 2019

- Investigation concerning:
 - Beam quality
 - Highest thicknesses
 - Optimal running stochastic cooling
 - Vacuum conditions due to cluster evaporation
 - Redo measurement with different scan times and target parameters (small/big clusters)
 - Effect of target settings on physical data taking ($pp \rightarrow pp\pi^0$)

MolFlow+ Vacuum Studies

- Ongoing master's thesis of D. Klostermann
- Calculate pressure profiles and conductance with test particle Monte Carlo method
- For particle generation and rebounds at facets Knudsen's cosines law is applied
- Particle speed is chosen by a pdf of particles colliding with a wall, based on Maxwell-Boltzmann distribution
- Pumps are defined by a sticking factor (probability of absorption), read pumping speed:
 - Assuming equilibrium both can be converted to each other by:

$$S[\frac{m^3}{s}] = sticking \times \frac{1}{4}\tilde{v}[\frac{m}{s}] \times A[m^2]$$

46 mm diameter

Collimator

Generating a "Cluster"-Jet

- The jet beam is simulated by creating an angular map using a simulated flight path from the collimator into the TVC
- Using this map a directed, continuous gas beam of the desired thickness is created at the TVC entry

Simulated jet profiles (Abscissa scale is given in facets/different scales)

Daniel Klostermann & Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2019/2

Simulation of Different Target Geometries

- PANDA CJT Prototyp @Münster
- Simulation of final target beam at COSY and at PANDA
- Trying to understand gas load at IP:
 - Flows from other chambers to IP
 - Simulation of evaporating clusters passing through the beam line
 - > **Promising Ansatz:** First simulations reproduce measured COSY vacuum by a factor of ~2 in presence of a target beam
- Measurements & simulations of flows with the PANDA prototype in Münster will be performed

PANDA Vacuum System

Activities concerning the PANDA prototype target

- Measurements concerning the shown gas flow simulations
 - Matching of simulation parameters with real measurements in everyday operation at Münster
 - Trying to supress/influence cluster evaporation using new produced cryogenic vacuum pipe for part of jet beam line
- Replaced coldhead for nozzle cooling installed
- Characterization of new produced nozzle series

Activities concerning the PANDA prototype target

- New computer hardware and DAQ equipment
- Completely new written slow control software for prototype
 - Based on EPICS
 - OPI/GUI using CSS
 - Central EPICS archiver "Archiver Appliance"
 - Same as used in Jülich

Summary

- Shown data taken at 2nd PANDA target beam time
- Preparing 3rd PANDA target beam time, continuing the investigation of beam quality, vacuum, and data taking effects introduced by the target
- Vacuum studies and simulations using Monte Carlo techniques
 - Comparison with real data from PANDA target at COSY and Münster prototype
 - Cooled beam pipe at prototype to suppress cluster evaporation effects
- New hard- and software at installed/integrated at prototype (coldhead, slow control, DAQ)