

News from the Pellet target

A.Gerasimov, V.Chernetsky, M.Büscher, P.Fedorets, A. Kantsyrev, E. Lushchevskaia, V.Panyushkin, A.Panyushkina, A.Bogdanov, A.Dolgolenko, P.Balanutsa, E.Ladygina, L.Gusev, S.Mineev, I.Tarasenko, V.Demekhin, A.Golubev, S.Makagonov, D.Bogachenko, N.Kristi, V.Karasev

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre «Kurchatov Institute» Moscow, Russia

PANDA Meeting, Darmstadt, June 24-28, 2019

Current status of the prototype

- 1. Stable long time jet and droplet production (many hours)
- 2. Almost no usage of the heaters for tuning of the temperature distributions.

Current activities

- 1. Development (upgrade) of the diagnostic system.
- 2. Measurement of the parameters of the pellets.
- 3. Step by step decrease of the nozzle diameter.
- 4. Operation and study of the adjustment system.
- 5. Continue R&D for TDR
- 6. Preparation of the draft of the TDR

Test of the prototype of the new diagnostic system

CCD camera SDU 285 Nikon 80-400mm f/4.5-5.6D ED VR AF Zoom-Nikkor Close-up lens +3 dioptre Resolution: 2µm/pixel

Installation of the new diagnostic system

Measurement of the pellets

new lens

Resolution : improved from 6.4 μ m/pixel to ~ 2 μ m/pixel

Observed effects

Comparison with the standard droplet formation regime

Observed effects

Effect N1: jet diameter is much smaller as the nozzle diameter

Effect N2: droplet diameter is \approx 13 µm

This is the first observations. No explanations. Additional investigation is needed.

Development of the adjustment system

- MDC Vacuum BLM-133-1-03 UHV linear actuator
- Movement by stepper motors, 3 µm linear steps
- Onitex OSM-42R controller

