Partial Wave Analysis of $\bar{p}p \rightarrow \phi\phi$

Iman Keshk

Ruhr-University Bochum Institut für Experimentalphysik I

PANDA Meeting, June 2019

UNVERSITÄT RUB Fanda 651

Motivation

• Lattice QCD predicts tensor glueball state at about $2.4 \text{ GeV}/c^2$

Iman Keshk (RUB)

Partial Wave Analysis of $\bar{p}p \rightarrow \phi \phi$

Motivation

- $\bar{p}p \rightarrow \phi\phi$ cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude
- Observation of $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ in $\pi^- p \to \phi \phi n$ (BNL, Phys.Lett.B201,568-572) and $J/\psi \to \gamma \phi \phi$
- Hint for intermediate glueball state?

Motivation

- Scan the cross section of $\bar{p}p \rightarrow \phi \phi$ in the mass region of the tensor glueball candidate ($\sqrt{s} = (2.25 2.6) \text{ GeV}$)
- Resonant and non-resonant reactions have same signature \rightarrow Partial Wave Analysis needed to extract 2⁺⁺ contribution
- Software package PAWIAN¹(PArtial Wave Interactive ANalysis), developed at Ruhr-Universität Bochum
- How to extract the contribution of resonances created in formation processes?

¹B. Kopf *et al.*, Hyperfine Interact. **229** no. 1-3, 69-74 (2014) Iman Keshk (RUB) Partial Wave Analysis of $\bar{p}p \rightarrow \phi\phi$

Identifying Resonances with Mass Independent PWA

Indications for the presence of a resonance with Breit-Wigner shape

- Phase-motion as an indication for the presence of a resonance
- Only relative phases extractable

 \rightarrow A stable, slowly changing reference phase needed!

$\bar{p}p$ initial States

- Amplitudes described by helicity formalism $\rightarrow \lambda = \vec{s} \cdot \vec{p}$
- $\bar{p}p$ system couples to spin singlet $\lambda = 0$ and spin triplet $\lambda = \pm 1, 0$ states

J	Singlet	J ^{PC}	Triplet	J ^{PC}	Triplet	J^{PC}
	$\lambda = 0$		$\lambda=\pm 1$		$\lambda=0,\pm 1$	
0	${}^{1}S_{0}$	0-+			³ P ₀	0++
1	${}^{1}P_{0}$	1^{+-}	³ P ₁	1^{++}	${}^{3}S_{1}, {}^{3}D_{1}$	$1^{}$
2	${}^{1}D_{2}$	2-+	³ D ₂	2	${}^{3}P_{2}, {}^{3}F_{2}$	2++
3	${}^{1}F_{3}$	3+-	³ F ₃	3++	$^{3}D_{3},^{3}G_{3}$	3
4	${}^{1}G_{4}$	4-+	³ G ₄	4	${}^{3}F_{4}, {}^{3}H_{4}$	4++
5	${}^{1}H_{5}$	5^{+-}	³ H ₅	5++	${}^{3}G_{5}, {}^{3}I_{5}$	5
6	¹ <i>I</i> ₆	6-+	³ I ₆	6	${}^{3}H_{6}, {}^{3}J_{6}$	6++

$\bar{p}p$ initial States

• Possible resonances for X in $\bar{p}p \to X \to \phi \phi$ $(J^{PC}(\phi) = 1^{--})$

J	Singlet	J ^{PC}	Triplet	J ^{PC}	Triplet	J^{PC}
	$\lambda = 0$		$\lambda=\pm 1$		$\lambda=0,\pm 1$	
0	${}^{1}S_{0}$	0-+			³ P ₀	0++
1			³ P ₁	1^{++}		
2	${}^{1}D_{2}$	2^{-+}			${}^{3}P_{2}, {}^{3}F_{2}$	2++
3			³ F ₃	3++		
4	¹ G ₄	4-+			${}^{3}F_{4}, {}^{3}H_{4}$	4++
5			³ H ₅	5++		
6						

Identifying Resonances with Mass Independent PWA

- States with high J should be supressed due to small phase space
- L + S must be even due to identical daughter particles in the decay
- Possible production and decay amplitudes (L, S < 4):

Identifying Resonances with Mass Independent PWA

• Generating data sets with fixed center of mass energy, leaving a gap between each energy point

- Extracting complex amplitudes by perfoming partial wave fits for each energy bin individually using randomized start parameters
- Event based maximum likelihood fit
- Complete decay chain is taken into account $\bar{p}p \rightarrow X \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$

- Focus on "realistic" example:
 - $\rightarrow 2^{++}$ Glueball m = 2.4 GeV, $\Gamma = 100\,\text{MeV}$
 - \rightarrow 0^{++} (f_0(2330)) m = 2.33 GeV, $\Gamma = 150 \text{ MeV}$
 - \rightarrow 4^{++} component with fixed phase
- 10000 generated Monte Carlo events per \sqrt{s} $\bar{p}p \rightarrow X \rightarrow \phi\phi \rightarrow K^+K^-K^+K^-$, $X = 2^{++}/4^{++}/f_0(2330)$
- Bin-Width = 200 keV, "gap" = 10 MeV
- Clear seperation of overlapping J^{++} resonances possible?
- How many events per bin needed for a clear identification?
- How does the identification depend on signal to *J*⁺⁺ component ratio?

Angluar distributions for energy bin at $2.4 \,\text{GeV}/c^2$

Partial Wave Analysis of $\bar{p}p \rightarrow \phi \phi$

•
$$w = |\sum A_{\lambda=0}^{S=1}|^2 + |\sum A_{\lambda=-1}^{S=1}|^2 + |\sum A_{\lambda=1}^{S=1}|^2$$

• $|Ae^{i\phi_A} + Be^{i\phi_B} + Ce^{i\phi_C} + ...|^2 = |Ae^{i-\phi_A} + Be^{i-\phi_B} + Ce^{i-\phi_C} + ...|^2$

•
$$w = |\sum A_{\lambda=0}^{S=1}|^2 + |\sum A_{\lambda=-1}^{S=1}|^2 + |\sum A_{\lambda=1}^{S=1}|^2$$

• $|Ae^{i\phi_A} + Be^{i\phi_B} + Ce^{i\phi_C} + ...|^2 = |Ae^{i-\phi_A} + Be^{i-\phi_B} + Ce^{i-\phi_C} + ...|^2$

Iman Keshk (RUB)

Partial Wave Analysis of $\bar{p}p \rightarrow \phi \phi$

- Breit-Wigner parameterization only valid for isolated resonances far away from thresholds
- K-Matrix formalism for more realistic scenario

 \rightarrow Glueball Scenario with two 2⁺⁺ poles decaying to two channels (K-Matrix formalism)

$$ar{p} p o X o \phi \phi o K^+ K^- K^+ K^-$$

 $ar{p} p o X o K^+ K^-$

Angluar distributions for energy bin at $2.4 \,\text{GeV}/c^2$

Generated $\phi\phi$ phase Generated $\phi\phi$ Argand plot [p 350 300 ∮ 250 Imagøø 0.8 0.6 200 0.4 150 0.2 100 50 0 -0.2^C 0.4 Realøø 2.3 2.35 2.4 2.45 ⁴⁵ 2.5 2.55 2.6 m(φφ) [GeV/c²] -0.4 -0.2 0.2 Extracted $\phi\phi$ phase Extracted $\phi\phi$ Argand plot [√events*sin(∆¢)] 12 12 Δφ [rad] tittti H₄H44H. · · · · · 10³ 0 -30 2250 2300 2400 2450 2500 2550 -25 -20 -15 -10 -5 m(oo) [keV/c2] [vevents*cos(∆)]

Partial Wave Analysis of $\bar{p}p \rightarrow \phi\phi$

- Results of model dependent coupled channel PWA equal to generated contributions and phases
- Sensitive to the size of the circles with mass independent PWA?
 → Further studies needed

Reconstruction with PandaRoot Breit-Wigner Scenario

Technical aspects

- PandaRoot release dec17p2
- Phase 1 detector setup (default, gem3+fts1256)
- Ideal tracking
- Track reconstruction with kaon hypothesis
- Simulation and reconstruction of 100k with PAWIAN generated "data" events for each \sqrt{s}
- \bullet Simulation and reconstruction of 1M with PAWIAN generated phase space distributed events for each \sqrt{s}

Selection Criteria $p_{\bar{p}} = 1.5 \, \text{GeV}$

- List of $\bar{p}p$ candidates by forming all combinations of 2 K^+ and 2 K^-
- Vertex Fit (RhoKinVtxFitter) P > 0.001
- 4C Fit (RhoKinFitter) P > 0.001 \rightarrow additional cut on $\bar{p}p$ mass to eject events which violate energy conservation

•
$$r = \sqrt{(m(K_1K_2) - m_{\phi})^2 + (m(K_3K_4) - m_{\phi})^2} < 10 \,\mathrm{MeV}/c^2$$

• No PID requirements so far

 \rightarrow More then 99% of events have 4 particles with kaon pdg code in final state

- After applying all selection criteria only one remaining combination for > 99% of events
- Eject events with more then one combination
- 10% < Efficiency(\sqrt{s}) < 20%

Probabilites Vertex and 4C Fit $p_{\bar{p}} = 1.5 \text{ GeV}$

Invariant K^+K^- mass after Vertex and 4C Fit $p_{\bar{p}} = 1.5 \,\text{GeV}$

Kinematics Truth and Reco $p_{\bar{p}} = 1.5 \text{ GeV}$

MC Truth

Iman Keshk (RUB)

Partial Wave Analysis of $\bar{p}p \rightarrow \phi \phi$

Momentum Vs. $Cos(\theta) p_{\bar{p}} = 1.5 \text{ GeV}$

Momentum Vs. $Cos(\theta) p_{\bar{p}} = 2.5 \text{ GeV}$

Box Generator for single Kaon studies: Flat Distribution in 0.2 GeV/c < p(K) < 0.9 GeV/c and $0.9 < \cos(\Theta) < 1$ (March 2018)

Partial Wave Analysis of $\bar{p}p \rightarrow \phi \phi$

Efficiencies (March 2018)

Partial Wave Analysis with Reconstructed Events

Extracted contributions

Generated contributions

 \rightarrow Extracted 2^{++} and 0^{++} contributions not in agreement with generated ones !

Partial Wave Analysis with Reconstructed Events

Generated angular distribution

Reco angular distribution

Partial Wave Analysis of ideal data with $heta_{\mathcal{K}} > 20^\circ$

• Eject all events of generated data sample with $\theta_{K} < 20^{\circ}$

Reco angular distribution

Generated angular distribution with $\theta_K > 20^\circ$

 Results of PWA with cutted angluar distribution of ideal data sample similar to results of PWA with PandaRoot reconstruction

Partial Wave Analysis of ideal data with $heta_{\mathcal{K}} > 20^\circ$

Contribution $\sqrt{s} = 2.25$	Ideal	PandaRoot	Ideal with $ heta_{K}>20^{\circ}$
all	50010.3	50010.1	49950.1
2++	9202.5	15025.4	17873.6
4++	11632.2	11290.2	10258
0++	28776.6	42464.1	48592.5

- Even for generated data samples, without detector efficiency included, no proper extraction of contributions possible if kaons with small decay angles get lost
- Further cutting on angluar distribution reveals: \rightarrow Proper PWA possible for loss of kaons with $\theta_K < 6^\circ$
- Reconstruction of tracks down to $\theta_{\rm K} \sim 6^\circ$ absolutley needed for PWA!
- Try different analysis approach

- Require at least 3 Kaons in final state
- Determination of missing four vector via initial state and 3 reconstructed tracks
- Cut on missing mass $(m_{miss}-m_{\mathcal{K}}) <$ 0.03 and set kaon mass

•
$$r = \sqrt{(m(K_1K_2) - m_{\phi})^2 + (m(K_3m_{miss}) - m_{\phi})^2} < 15 \text{ MeV}/c^2$$

- Efficieny two times higher then with previous analysis
- Cut on invariant $p_{\bar{p}}$ mass for better comparison with previous analysis

New selection

New selection

Old selection

PWA with Reconstructed Events (Missing Kaon Analysis)

Reco angular distribution missing kaon

Reco angular distribution 4 reconstructed tracks

PWA with Reconstructed Events (Missing Kaon Analysis)

Reco angular distribution missing kaon

Generated angular distribution

Contrib.	Ideal	PandaRoot	Ideal with $ heta_{K}>20^{\circ}$	PandaRoot _{missK}
all	50010.3	50010.1	49950.1	35830
2++	9202.5	15025.4	17873.6	11533.9
4++	11632.2	11290.2	10258	8538.3
0++	28776.6	42464.1	48592.5	24824

- No proper extraction of contributions possible for both analysis approaches
- The $\overline{P}ANDA$ detector should have the ability to reconstruct kaons with small decay angles to analyse the reaction $\overline{p}p \rightarrow \phi\phi$

Generated data samples:

- Separation of different J⁺⁺ contributions with a model independent approach and extraction of phase motions feasible for discussed scenarios
- Quality of separation depends on number of signal and number of background events and not on ratio
- Precedure can be used to analyse any resonance created in formation processes
- ② Generated data samples:
 - Kaons with decay angle down to $\sim 6^\circ$ need to be reconstructed to perform proper PWA
- 3 Simulation and reconstruction with PandaRoot:
 - Low efficiency for kaons with decay angles below 20°
 - No reconstruction of kaons with decay angles below 10° for two different analysis approaches
 - No proper PWA possible with reconstructed events so far

I Fastsim as cross check?

Generated data samples:

- Separation of different J⁺⁺ contributions with a model independent approach and extraction of phase motions feasible for discussed scenarios
- Quality of separation depends on number of signal and number of background events and not on ratio
- Precedure can be used to analyse any resonance created in formation processes
- ② Generated data samples:
 - Kaons with decay angle down to $\sim 6^\circ$ need to be reconstructed to perform proper PWA
- Simulation and reconstruction with PandaRoot:
 - Low efficiency for kaons with decay angles below 20°
 - No reconstruction of kaons with decay angles below 10° for two different analysis approaches
 - No proper PWA possible with reconstructed events so far

I Fastsim as cross check?

Generated data samples:

- Separation of different J⁺⁺ contributions with a model independent approach and extraction of phase motions feasible for discussed scenarios
- Quality of separation depends on number of signal and number of background events and not on ratio
- Precedure can be used to analyse any resonance created in formation processes
- ② Generated data samples:
 - Kaons with decay angle down to $\sim 6^\circ$ need to be reconstructed to perform proper PWA
- Simulation and reconstruction with PandaRoot:
 - $\bullet\,$ Low efficiency for kaons with decay angles below $20^\circ\,$
 - $\bullet\,$ No reconstruction of kaons with decay angles below 10° for two different analysis approaches
 - No proper PWA possible with reconstructed events so far

④ Fastsim as cross check?

Generated data samples:

- Separation of different J⁺⁺ contributions with a model independent approach and extraction of phase motions feasible for discussed scenarios
- Quality of separation depends on number of signal and number of background events and not on ratio
- Precedure can be used to analyse any resonance created in formation processes
- ② Generated data samples:
 - Kaons with decay angle down to $\sim 6^\circ$ need to be reconstructed to perform proper PWA
- Simulation and reconstruction with PandaRoot:
 - $\bullet\,$ Low efficiency for kaons with decay angles below $20^\circ\,$
 - $\bullet\,$ No reconstruction of kaons with decay angles below 10° for two different analysis approaches
 - No proper PWA possible with reconstructed events so far

I Fastsim as cross check?

Backup

Monte Carlo Truth Kinematics $p_{\bar{p}} = 1.5 \, \text{GeV}$

Monte Carlo Truth Kinematics $p_{\bar{p}} = 1.5 \text{ GeV}$

