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2014 testbeam @ MAMI

I 4× 4 prototype placed in 50-350 MeV tagged-photon beam.

I Previously analysed and used to evaluate prototype.

I PMT signal digitised with commercial 12-bit, 160 MSPS
sampling ADC:
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Aim of this work

I Want to optimise FPGA triggering/feature extraction
algorithms with respect to:

I Pulse identification (triggering)
I Energy resolution
I Time resolution
I Pile-up identification/reconstruction

I To do this: develop Monte Carlo model of 4× 4 prototype
(starting with Geant4). This talk.

I Enables generation of pulses with known underlying energy,
time and pile-up information. Then: evaluate feature
extraction.
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Modelling the pulse shape

Geant4 model Shower profile in detector

Shower development timing

Literature Scintillator time constants

Fibre time constant

Fibre attenuation

PMT response

Free parameters Pulse integral

Time offset

Electronics time constant

Goal:
Signal @ sADC

Convolve

Fit to testbeam
waveforms

MC generation
of individual pulses
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Energy resolution

Beam

Analyse single detector cell.

Generated data (Ebeam = 156 MeV):
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Time resolution

Beam

Experimental data
analysed in Gießen:
- Require similar Edep in cells.
- Constant Fraction timing
- Calculate ∆t
- Assume: σt = σ(∆t)/

√
2

Generated data (Edep = 100 MeV):
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Same analysis as on
experimental data.
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Amplitude and time properties of model-generated signals
agree well with experiment.

Next step: evaluate feature extraction.

However, model shows that the
true time resolution of single detector > σ(∆t)/

√
2.
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Time resolution issue

PMT

sADC

CF t1

T0 (from model)

PMT

sADC

CF t2

In experiment: ∆t = t1 − t2 determined.

Fundamental time resolutions come from (t1 − T0) and (t2 − T0).
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Updated time resolution
Beam directed between two cells
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Reason: (t1 − T0) and (t2 − T0) correlated.
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Due to physics — shower development is correlated in adjacent cells.
Affects time structure of signal.

Consequence: σ(∆t)/
√

2 is a too optimistic estimate of σt .
A more correct estimate is based on σ(t1 − T0) from model.
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Conclusions

I A Geant4-based model of the shashlyk calorimeter has been
developed.

I Amplitude and time structures of generated pulses
agree well with experiment.

I Model reveals correlations in timing of signals in adjacent
detectors. Affects present analysis of time resolution.
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Outlook

I Evaluate algorithms for triggering + feature extraction
(suggestions welcome).

I Questions to be addressed:
I How much can the time resolution be improved? Time

resolution depends on algorithm, but also on sampling
frequency and shaping time.

I What is required when it comes to pile-up events?
Reconstruction, flagging event?

I Implementation in FPGA. Has to be feasible for chosen
algorithm.
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Thank you for your attention!
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Backup slides
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Example of a Monte-Carlo generated signal
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Testbeam signal:
Ebeam = 156 MeV

MC generated signal:
T0 = 70.7 ns
Ebeam = 156 MeV
Edep = 67.6 MeV
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Mode of amplitude distribution — experiment and model
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σ of amplitude distribution — experiment and model
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Time correlation

Previous assumption: σ(∆t) =
√

2σ2t ⇒ σt = σ(∆t)/
√

2

46 48 50 52 54

t1 − T0 [ns]

46

48

50

52

54

t 2
−
T

0
[n

s]

ρ = 0.53

σ(∆t) =
√
σ(t1 − T0)2 + σ(t2 − T0)2−2ρσ(t1 − T0)σ(t2 − T0)

17/12


	Appendix

