

Backward End-Cap Activities

E

Oliver Noll

PANDA Collaboration Meeting 19/2

26.06.19

Backward End-Cap Activities

Time Based Simulation Framework
In Situ APD Characterisation

Time Based Simulation Framework – Mainz SADC Firmware

Finite Impulse Response Filtering

Helmholtz-Institut Mainz

- 20 coefficients
- Efficient implementation (Distributed Arithmetics)

SADC (PM2017 v 3.5), Uppsala

Amplitude Extraction + Hit Detection

6000 Time [ns]

Pileup detection

Time Extraction

- Second derivative
- Interpolation between samples

Ext. Ampl.

4000

2000

Time [ns]

3

Time Based Simulation Framework – Origin

Hardware Development

- Time consuming development
- Logic simulation (test benches)
- Filter coefficients?
- Extraction parameters?
- Different methods?
- Different APD gains?

- Baseline measurement with SADC
- Determination of spectral density
- Normalised to ADC (0 dB)
- Strong APFEL contribution

08/07/2019

- Baseline generator
- Inverse Fourier-Transformation
- Mixing components according to spectral density
- Uniform distributed phases

Time Based Simulation Framework – Realistic Noise Floor

- Good agreement at relevant frequencies
- Small discrepancies (~2-3 dB) at high frequencies

Measured and Simulated Baselines (LG and HG)

EM

- Similar RMS
- "Looks" similar!
- Similar enough?

Time Based Simulation Framework – Realistic Noise Floor

- Parameter extraction applied at both: simulated baselines and measured baselines
- 1024 sample baselines (12.8 μs)
- Average number of noise hits at given threshold
- Perfect simulation →points congruent with angle bisector
- Simulation → slightly less (1-3) noise hits

Time Based Simulation Framework – Simulation Procedure

4000 traces per energy or threshold

EN

- 3 pulses per trace
- 12000 possibly detectable true hits
- Noise hit region

Time Based Simulation Framework – Noise Hit Rate

• Example: APD gain 200

E

- 3 MeV events
- Current firmware implementation: up to 558 kHz/channel
- Up to 90 % efficiency at APFEL HG
- Online comparison?

Time Based Simulation Framework – Linearity

- Example: APD gain 200
- Residua < 150 keV

Helmholtz-Institut Mainz

ΕN

Time Based Simulation Framework – Linearity

- Example: APD gain 200
- $\Delta t = t_{ext} t_{set}$

- RMS < 1 ns for E > 60 MeV
- RMS < 150 ps for E > 500 MeV

Helmholtz-Institut Mainz

Time Based Simulation Framework – Noise Term

Simulation

Beam Test

EΜ

Single channel noise = <u>1.082(6) MeV</u>

Beam Test: Relative Energy Resolution, Central Crystal, 3x3 5.5 $a_{3\mathrm{x}3} \oplus rac{b_{3\mathrm{x}3}}{\sqrt{E}} \oplus rac{c_{3\mathrm{x}3}}{E}$ c $_{3\mathrm{x}3}$ =3.40±0.98 MeV 5.0 4.5 **Relative Resolution** rel. en. res. [%] 3.5 3.5 3.0 2.5 2.0 200 300 400 500 600 700 800 900 Energy [MeV]

Single channel noise = $3.40(98)/\sqrt{9} = 1.33(33)$ MeV

Time Based Simulation Framework – PandaRoot

• Implementation of signal generator and parameter extraction into PANDA ROOT by Guang Zhao

ΕΛ

• Computing session yesterday: "Backward endcap EMC digitization in PandaRoot"

In Situ APD Characterisation

Reasons:

- Lack of APD characterisation data in the past
- Possibility to monitor APD characteristics inside EMC
 - Change of characteristics due to irradiation

Challenges

- AC (pulsed) characterisation differs from DC characterisation
- Where is M = 1?

<u>Aim</u>

• Find AC fit model in order to reveal DC part

350

Bias Voltage [V]

400

In Situ APD Characterisation – APFEL Capacitance

Interplay between APFEL entrance capacitance C_i and detector (APD) capacitance *C*_d:

•
$$Q(t) \approx \frac{Q_s \cdot (1 - e^{-t/\tau})}{1 + \frac{C_d}{C_s}}$$
 (H. Spieler)

 $Q(t) \propto$ pulse amplitude $C_d = C_d(U)$

University Press, Oxford, 2005

Helmuth Spieler. Semiconductor Detector Systems, volume v.12 of Semiconductor Science and Technology. Oxford

= 1 ?

M

08/07/2019

In Situ APD Characterisation – APD Capacitance

&/`(t@)

EM

In Situ APD Characterisation – AC Fit Function

ΕM

08/07/2019

Helmholtz-Institut Mainz

In Situ APD Characterisation – AC/DC Transformation

• $\tilde{f}_{DC} = \frac{F_{fit} \cdot (1+C_d)}{R}$

• Data' = Data
$$\cdot \frac{F_{fit} \cdot (1+C_d)}{R}$$

- Extraction of pure DC part
- Well defined normalisation (M=1)

EΜ

In Situ APD Characterisation – Access to APD Capacitance

APD Capacitance

Helmholtz-Institut Mainz

- Neat by-product
- Need to compare with measurement

EΜ

Helmholtz-Institut Mainz

In Situ APD Characterisation – Correction of Beam Data

EΜ

Correction of Beam Data

- Example of a crystal APD pair (PROTO16-2, MAMI beam test)
- Corrected with in situ methode

Summary

- Time Based Simulation Framework
 - Originally developed for FPGA algorithms tests
 - Brought to an user-friendly shape (C++ interface)
 - Implemented in PandaRoot by Guang Zhao
- In Situ APD Characterisation
 - New approach to calibrate APDs inside EMC
 - Promising results
 - Careful measurement necessary

Helmholtz-Institut Mainz

Backup – Noise Hit Suppression

Noise Hit Suppression

EΛ

- Online hit comparison between APDs
- Lower threshold
- Lower noise hit rate
- Less redundancy (What if one APD fails?)

Backup – In Situ Char. Careful Measurement

• Merging data