Realistic and time-based Hyperon Tracking at PANDA

Jenny Regina

PANDA CM, Hyperon Session GSI, 24-28 June

Outline

- Challenges for hyperon tracking
- Realistic time-based tracking algorithms
- Tests
- Outlook

Important Hyperon Reactions

Hyperon events very challenging to reconstruct!

- Complex event topologies
- Neutral hyperons
- Displaced vertices

Momentum Distributions

Momentum Distributions

Decay Vertices

10³

10²

10

10³

10²

10

Decay Vertices

Time-based Reconstruction

Event-based: data sorted according to events **Time-based:** data sorted according to time-stamp

- 1. Time based digitization works for main barrel tracking detectors [1]
- Realistic track reconstruction able to handle time-based data; SttCellTrackFinder and MvdHitFinder
- 3. Need tracking quality assurance which can handle time based data

[1] https://indico.gsi.de/event/6354/contribution/7/material/slides/0.pdf

SttCellTrackFinder

Developed by J. Shumann

- Cellular Automaton
- Riemann Fit
- Utilizes STT hit information
- Have procedure for utilizing isochrones information
- Parts run on GPU

MvdHitFinder

- Extrapolation of tracks to MVD
- Utilizes MVD hit information
- Mainly use xy-information
- Do not assume tracks originate from interaction point

The Cellular Automaton

- A. Tracks traverse STT
- B. Hit tubes are numbered
- *C. Unambiguous* hits are iteratively renumbered until hits in one cluster have same number
- D. Ambiguous hits are given all numbers possible
- Time information can be taken into account
- Two separate unambigous hit clusters can only be connected to longer track segment if they are interconnected via ambigous hits

Calculation of plane through 3D points simple eigenvalue determination

From \vec{n} , cirlcle parameters are known:

 $u_{0} = -\frac{n_{1}}{2n_{3}}$ $v_{0} = -\frac{n_{2}}{2n_{3}}$ Circle center $v_{0}^{2} = \frac{1 - n_{3}^{2} - 4cn_{3}}{4n_{3}^{2}}$ Radius $c+n_{1}x+n_{2}y+n_{3}z=0$

Mvd Hit inclusion

Procedure:

- Take already fitted track
- Add MVD hit to track if hit is within certain tolerance of track
- Add only best (closest) hit from each layer
- Refit track
- Repeat for each layer
- Outermost layer \rightarrow Innermost layer
- Not sensitive to missing hits in layers
- Currently only handle barrel layers
- One hit can be added to several tracks

Runtime analysis

~ 10 ms / event on CPU On i7 3.4 GHz processor Speedup of factor 100 can be achieved for STT hit finding part on GPU GeForce GTX 750 Ti GPU

Transverse Momentum Resolution

• DPM Sample, P_{beam}=5 GeV/c, 10,000 Events •

Absolute momentum resolution

Results from tracking workshop last year: https://indico.gsi.de/event/7584/contribution/6/material/slides/0.pdf

Transverse Momentum Resolution

• DPM Sample, P_{beam}=5 GeV/c, 10,000 Events .

Absolute momentum resolution

No isochrones

Results from tracking workshop last year: https://indico.gsi.de/event/7584/contribution/6/material/slides/0.pdf

Momentum resolution

- Isochrones included in tracking procedure
- No Kalman filter
- DPM events
- P_{beam}=2 GeV/c

Tests of SttCellTrackFinder

Definitions:

- **Reference track set:** Tracks with >5 STT Hits
- **Condition for SttCellTrackFinder reconstructibility:** >5 STT Hits •
- If a track contains hits from several MC tracks, the one from which the most hits originate is counted as the true one

Fraction of Reconstructed tracks=# Reconstructed tracks by SttCellTrackFinder

Tracks in reference track set

Varying P_t

• Box Generator

- Varying p_t
- Particles originate from (0,0,0)
- Isotropic $10 < \theta < 120, 0 < \phi < 360$
- 1 particle per event
- Protons and Pions
- 10,000 primaries/data point

Results

Varying radial track origin

- Box Generator
- P_t=1 GeV/c
- Varying origin, R=x²+y²
- z=0 cm, α=25°
- Isotropic $10 < \theta < 120, 0 < \phi < 360$
- 1 particle per event
- Protons and Pions
- 10,000 primaries/data point

Results

Vertical lines=STT outer radius

Varying z-position of track origin

- Box Generator
- P_t=1 GeV/c
- Varying origin, z
- x=y=0 cm
- Isotropic $10 < \theta < 120, 0 < \phi < 360$
- 1 particle per event
- Protons and Pions
- 10,000 primaries/data point

Results

Vertical lines=STT outer boundaries

Outlook

- Test on hyperon events and varying $\ensuremath{\mathsf{p}_{\mathsf{beam}}}$
- Test on time based data
- Test with p_z-finder [2]
- Work ongoing for algorithm improvements [3]
- Possibility: examine low p_t region closer
- Possibility: examine kaons and muons

[2] Walter Ikegami Anderssons talk from computing session yesterday: https://indico.gsi.de/event/8999/contribution/4/material/slides/0.pdf
[3] My talk from computing session yesterday: https://indico.gsi.de/event/8999/contribution/2/material/slides/0.pdf

