E Spectroscopy: Status of Physics Analysis

Jun 26, 2019 | Albrecht Gillitzer

PANDA Collaboration Meeting 19/2, GSI Darmstadt

Simulation & Analysis

Present status

Group Talk at DPG 2019, München

decay mode (cc)	final state (cc)	conv.	tree fit	PID	new vn	analyst
$\Xi^{*-} \to \Lambda K^-$	$\overline{\Xi}^+ \Lambda K^-$	\checkmark	✓	\checkmark	\checkmark	Jennifer Pütz
$\begin{split} \Xi^{*-} &\to \Xi^- \pi^+ \pi^- \\ \Xi^{*0} &\to \Xi^- \pi^+ \end{split}$	$\overline{\Xi}^+\Xi^-\pi^+\pi^-$	✓	✓	•		Alessandra Lai, AG
$\Xi^{*-} ightarrow \Xi^- \pi^0$	$\overline{\Xi}^+\Xi^-\pi^0$	\checkmark	•			AG
$\Xi^{*-} ightarrow \Xi^- \eta$	$\overline{\Xi}^+\Xi^-\eta, \eta \to \gamma\gamma$	x	•			Kevin Luckas ^a
	$\overline{\Xi}^+ \Xi^- \eta$, $\eta \to \pi^+ \pi^+ \pi^0$	X				

further decay modes: $\Xi^{*-} \to \Xi^{-} \pi^{0} \pi^{0}$, $\Xi^{*-} \to \Sigma^{0} K^{-}, \Sigma^{0} \to \Lambda \gamma$,conv.' = step by step fit, ,new vn' = up-to-date PandaRoot ^a Univ. Bonn

Page 2

Simulation & Analysis Present Status

decay mode (cc)	final state (cc)	conv.	tree fit	PID	new vn	analyst
$\Xi^{*-} \to \Lambda K^-$	$\overline{\Xi}^+ \Lambda K^-$	\checkmark	\checkmark	\checkmark	\checkmark	Jennifer Pütz
$\begin{array}{l} \Xi^{*-} \to \Xi^{-} \pi^{+} \pi^{-} \\ \Xi^{*0} \to \Xi^{-} \pi^{+} \end{array}$	$\overline{\Xi}^+\Xi^-\pi^+\pi^-$	\checkmark	\checkmark	+		Alessandra Lai, AG
$\Xi^{*-} \rightarrow \Xi^- \pi^0$	$\overline{\Xi}^+\Xi^-\pi^0$	\checkmark	+	+		AG
$\begin{array}{l} \Xi^{*-} \to \Xi^{-} \pi^{0} \pi^{0} \\ \Xi^{*-} \to \Xi^{-} \pi^{0} \end{array}$	$\overline{\Xi}^+\Xi^-\pi^0\pi^0$		•	•		AG
$\Xi^{*-} ightarrow \Xi^- \eta$	$\overline{\Xi}^+\Xi^-\eta, \eta \to \gamma\gamma$	x	+		+	Kevin Luckas ^a
	$\overline{\Xi}^+ \Xi^- \eta$, $\eta \to \pi^+ \pi^+ \pi^0$	X				

further decay modes: $\Xi^{*-} \to \Sigma^0 K^-, \Sigma^0 \to \Lambda \gamma$

^a Univ. Bonn

,conv.' = step by step fit, ,new vn' = up-to-date PandaRoot

Page 4

Added: photon time information

$\overline{\Xi}^+\Xi^-\pi^0$

Two samples: continuum, w. E*resonances

- $\overline{\Xi}^+\Xi^-\pi^0$ continuum: no deviation from flat acceptance
- E(1530), E(1690), E(1820) clearly visible

$\overline{\Xi}^+\Xi^-\pi^0$

$\Xi^{-}\pi^{0}$ system invariant mass

Member of the Helmholtz Association

,treefitter' & ,open' PID: Reduce Combinatorics!

- Photon energy cut
- Photon time
- π^0 candidate: tight mass cut
- π^0 best & 2nd-best candidate from mass constraint fit
- Particle ID: exclude prob $(\pi) > 0.9$ for $p, \bar{p}, \text{ prob}(p) > 0.9$ for π^{\pm}
- Final state particles (p, p̄, π⁺₁, π⁻₁, π⁺₂, π⁻₂): kinematical constraints on P_t vs P_z
- Composite particles $(\overline{\Xi}^+, \Xi^-, \overline{\Lambda}, \Lambda)$: tight mass cut
- $\overline{\Xi}^+\Xi^-\pi^0$ system candidate: P4 cut on each component

Problem of ,treefitter' with Neutral Candidates

π^0 Mass Constraint in ,treefitter'

idea: redo the fit for candidates with too low mass with corrected E component & 'lock' the candidate

→ ,lock' is ignored, but some improvement visible (factor ~2)

Reconstruction Efficiency & Purity

Status $\overline{\Xi}^+\Xi^-\pi^+\pi^-$ Analysis

- Reaction channel analyzed by Ale using step-by-step reconstruction of the decay tree
- Used Ale's simulation data + new data generated with same conditions → 5.585 M events
- Full decay tree fit \rightarrow huge number of $\bar{p}p3\pi^+3\pi^-$ combinations !
- Open PID

$$M(\overline{\Xi}^+\pi^-)$$
 vs $M(\Xi^-\pi^+)$

shows $\Xi^* \rightarrow \Xi \pi$ decays

 $M(\Xi^{-}\pi^{+})$

shows $\Xi^* \to \Xi \pi$ decays

 $M(\overline{\Xi}^+\pi^-)$

shows $\Xi^* \to \Xi \pi$ decays

modified Dalitz Plot:

 $M(\overline{\Xi}^+\pi^+\pi^-)$ vs $M(\Xi^-\pi^+\pi^-)$

shows $\Xi^* \rightarrow \Xi \pi \pi$ decays

 $M(\Xi^{-}\pi^{+}\pi^{-})$

shows $\Xi^* \to \Xi \pi \pi$ decays

 $M(\bar{\Xi}^+\pi^+\pi^-)$

shows $\Xi^* \to \Xi \pi \pi$ decays

MC Signal Efficiencies

MC losses due to:

- interaction
- missing hits of daughter particles

Sample	# Events	n / n _{gen}	n / n _{sig}
generated	5 585 000	1.000	
signal expected	5 572 385	0.998	1.000
MC $\overline{\Xi}^+ \rightarrow \overline{\Lambda} \pi^+$	5 465 186	0.979	
MC $\Xi^- \rightarrow \Lambda \pi^-$	5 468 334	0.979	
MC $\overline{\Lambda} \rightarrow \bar{p}\pi^+$	5 374 421	0.962	
MC $\Lambda \rightarrow p\pi^-$	5 381 143	0.964	
MC Signal	5 177 950	0.927	0.929
,no-int.' flag	5 122 230		0.919
,recoʻ tag (R1)	1 441 190		0.259
,final' tag (R3)	344 230		0.0618

true reco / signal: 0.0585

Single Particle Efficiencies & Purities

Particle	# Events	n / n _{sig}	
p	4 727 542	0.848	
$ar{p}$	4 585 731	0.823	
π_0^+	4 613 315	0.829	
π_0^-	4 607 924	0.827	
π_1^+	4 152 564	0.745	
π_1^-	4 145 591	0.744	
π_2^+	3 878 110	0.696	
π_2^-	3 873 531	0.695	

Particle	# Events	n _{true} / n _{rec}
π^+	342 214	0.994
π^-	342 244	0.994
Ξ+	335 862	0.976
Ξ^-	335 562	0.974
$\overline{\Lambda}$	340 012	0.988
Λ	339 803	0.987
$\overline{\Xi}^+\Xi^-\pi^+\pi^-$	326 036	0.947

Ideal PID: 0.991

Conclusion & Outlook

- $\bar{p}p \to \bar{\Xi}^+ \Xi^- \pi^0$ and $\bar{p}p \to \bar{\Xi}^+ \Xi^- \pi^+ \pi^-$ now with treefitter & open PID
- $\overline{\Xi}^+\Xi^-\pi^0$: 3.8% reco efficiency, 93.5% purity
- $\overline{\Xi}^+\Xi^-\pi^+\pi^-$: 5.9% reco efficiency, 94.7% purity
- issues: neutral candidate mass constraint, PID
- to do: S/B with hadronic background (DPM / FTF), up-to-date PandaRoot version