HPGe irradiation test and hyperatom experiment

Marcell Steinen

Helmholtz-Institut Mainz

Panda Meeting 19-2, GSI, 6-25-19

• HPGe Irradiation test at COSY

 Feasibility studies of the hyperatom experiment

HPGe Irradiation test at COSY

HPGe Irradiation test at COSY

PANGEA in PANDA

- HPGe crystals susceptible to neutron irradiation
- PANDA (180 days): n fluence $\approx 10^{10}$ n/cm²

HPGe irradiation test

- Irradiation test at COSY with single crystal prototype
- 5.5 days COSY
 → 96 days PANDA

Influence on spectrum of ⁶⁰Co

- Additional lines; enhanced compare to PANDA
- Line shape changes: Low energy tails, worse resolution
- Pulse shape analysis (PSA) allows partial recovery

PSA: Moving window analysis

- Digital pulse processing via moving window deconvolution M. Lauer, http://doi.org/10.11588/heidok.00004991
 - Deconvolution
 - Numerical differentiation
 - Moving average (low pass)
- Increased rate capabilities
 → Pile-up handling

Radiation damage correction

- Low energy tails cause by trapped holes
- Trapping prob. depends on path length of holes
- Analysis of rising edge of detector signal
 → Radial interaction point

Effect of Corrections

No correction

After correction

Gaussian shape recovery

Results

- DAQ and therm. issues
 decrease performance
- PSA allows partial resolution recovery
- Annealing recovers initial crystal performance
 - → Detector withstands irradiation
- New systematic test: TRIGA reactor (2019/20)

Institut Mainz

Feas. studies: hyperatom exp.

Feasibility studies of the hyperatom experiment

Hyperatoms

- Hyperon puzzle in neutron stars
- $m_{red,\Xi} \approx 2570 m_{red,e}$
- High initial (n,l) states
- X-ray energy to keV-MeV
 → Germanium detectors
- Radius of states: $r \propto \frac{n^2}{m_{red}}$
 - → Nuclear interaction in neutron rich periphery
 - \rightarrow Measurement of V_E

Adaptation from T. Aramaki et al Astroparticle Physics 49 (2013), pp. 52-62

Observables

Ξ⁻-²⁰⁸Pb observables

6/17/2019

Production: Target system

Secondary target

- Split target system unique
 -> heavy targets possible
- Optimization
 - Max. Ξ^{-} stopping
 - Min. X-ray absorption

-lelmholtz-Institut Mainz

Event selection

Systematics

- Dominated by uncertainty of nuclear shape
- High precision calibration via ¹⁵²Eu

Predictions

Experimental Landscape

Summary

- Promising irradiation test at COSY
 - PSA allows partial recovery of radiation damage
 - Improvements at TRIGA in 2019/2020
- ²⁰⁸Pb hyperatoms allow to study Ξ⁻ optical potential in neutron rich matter
 - Heavy hyperatoms unique at PANDA
 - Higher rates than experiments at J-PARC
 - $-\delta(\text{Re}(V_{\Xi})_{\text{stat}} \approx \delta(\text{Im}(V_{\Xi})_{\text{stat}} \approx 1 \text{ MeV})$
 - Further improvement possible by more sophisticated cuts

Thanks for your attention

Backup Slides

FEP-efficiency PANGEA

Ξ⁻-²⁰⁸Pb

Absorber materials - observables

