Can We See Hidden Charm Pentaquarks in the Reaction $pp \rightarrow pp J/\psi$?

Jun 25, 2019 | Albrecht Gillitzer

PANDA Collaboration Meeting 19/2, GSI Darmstadt

The LHCb Pentaquark seen in $\Lambda_b \rightarrow p J/\psi K^-$ decays

The LHCb Pentaquark: Contribution of Λ^{*} States

 Λ^* spectrum not sufficiently known

FIG. 1 (color online). Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.

R. Aaij et al., PRL 115 (2015) 072001

What can we do in PANDA?

- We can already search for $P_c(4450)^+$ during commissioning with protons in $pp \rightarrow pp J/\psi$?
- Close to but still below the HESR kinematic limit (?)
- Different production mechanism, no contribution of Λ^* resonances
- Later on, if still interesting, it can of course also be done with antiprotons in $\bar{p}p \rightarrow \bar{p}p J/\psi$
- Search can be extended by including η_c in $pp \rightarrow pp\eta_c$

15 GeV/c $pp \rightarrow pp J/\psi$ Full PandaRoot Simulation

	noPhotos
 50% resonant, 50% continuum LHCb central values for P_c⁺ J/ψ → e⁺e⁻ (VLL) PHSP all other cases 	Decay ppSystem 0.5 p+ p+ J/psi PHSP; 0.5 p+ Pc(4450)+ PHSP; Enddecay
 1.9 M events Analysis 	Decay Pc(4450)+ 0.5 p+ J/psi PHSP; Enddecay
 Decay Tree Fitter Ideal PID (here) Realistic PID (completed) 10 M FTF background 	Decay J/psi 1.0 e+ e- VLL; Enddecay End

Generated events

High MC Track Multiplicity

- Many secondary particles at 15 GeV/c
- Also for reconstructable events (24.5%) \rightarrow good pre-selection

Preselection of p and e[±] Candidates

- Protons: 0.5 GeV/c GeV/<math>c and $\theta < 30^{\circ}$
- Electrons: more complicated cut needed → use boundary of inner / outer ellipse to exclude empty region

• Ellipse:
$$\frac{(x-x_0)^2}{a^2} + \frac{y^2}{b^2} = 1$$

R parameter:

$$R_{i/o} = \sqrt{\left(\left(p_z - p_{i/o}\right)/a_{i/o}\right)^2 + p_t/b_{i/o}^2}$$

 $R_i > 0.9, R_o < 1.1$

MC e⁺ Pt vs Pz (final)

MC $e^+ \theta$ vs P (final)

The $pp \rightarrow pp J/\psi$ Cross Section

- no data very close to threshold
- cross section will be small
- no case for initial commissioning
- should add e⁺e⁻ and µ⁺µ⁻ decay data
- $\sigma = 0.1 \text{ nb, full } L$, 2 months \rightarrow ~1200 ppJ/ψ events reconstr.

New LHCb data arXiv:1904.03947 3 states $P_c(4312)^+$, $P_c(4440)^+$, $P_c(4457)^+$

Generated events Simulation started

Conclusion & Outlook

- 1.9 M events $pp \rightarrow pp J/\psi \rightarrow ppe^+e^-$ including $P_c(4450)^+$ simulated and analyzed with treefitter & ideal PID
- 9.6% reco efficiency, 98.0% purity
- issues: composite candidate mass constraint, P4 constraint, PID
- to do:
 - open PID
 - updated P_c resonance parameters
 - S/B with hadronic background (FTF)
 - up-to-date PandaRoot version
 - $J/\psi \rightarrow \mu^+\mu^-$ decay channel