Can We See Hidden Charm Pentaquarks in the Reaction $p p \rightarrow p p J / \psi ?$

Jun 25, 2019 | Albrecht Gillitzer

PANDA Collaboration Meeting 19/2, GSI Darmstadt

The LHCb Pentaquark seen in $\Lambda_{b} \rightarrow p J / \psi K^{-}$decays

$$
P_{c}(4450)^{+}:
$$

R．Aaij et al．，PRL 115 （2015） 072001

－$M=4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV}$
－$\Gamma=39 \pm 5 \pm 19 \mathrm{MeV}$
－$J^{P}=5 / 2^{+}$（or $5 / 2^{-}$or $3 / 2^{-}$？）

The LHCb Pentaquark：Contribution of Λ^{*} States

Λ^{*} resonances play a strong role Λ^{*} spectrum not sufficiently known

FIG． 1 （color online）．Feynman diagrams for（a）$\Lambda_{b}^{0} \rightarrow J / \psi \Lambda^{*}$ and（b）$\Lambda_{b}^{0} \rightarrow P_{c}^{+} K^{-}$decay．

What can we do in PANDA？

－We can already search for $P_{c}(4450)^{+}$during commissioning with protons in $p p \rightarrow p p J / \psi$ ？
－Close to but still below the HESR kinematic limit（？）
－Different production mechanism，no contribution of Λ^{*} resonances
－Later on，if still interesting，it can of course also be done with antiprotons in $\bar{p} p \rightarrow \bar{p} p J / \psi$
－Search can be extended by including η_{c} in $p p \rightarrow p p \eta_{c}$

$15 \mathrm{GeV} / \mathrm{c} p p \rightarrow p p J / \psi$ Full PandaRoot Simulation

noPhotos
－50\％resonant， 50% continuum
－LHCb central values for P_{c}^{+}
－$J / \psi \rightarrow e^{+} e^{-}$（VLL）
－PHSP all other cases
－ 1.9 M events
－Analysis
－Decay Tree Fitter
－Ideal PID（here）
－Realistic PID（completed）
－ 10 M FTF background

Decay ppSystem
$0.5 \mathrm{p}+\mathrm{p}+\mathrm{J} / \mathrm{psi} \quad$ PHSP；
$0.5 \mathrm{p}+\mathrm{Pc}(4450)+\mathrm{PHSP}$ ；
Enddecay
Decay Pc（4450）＋
$0.5 \mathrm{p}+\mathrm{J} / \mathrm{psi}$
PHSP；
Enddecay
Decay J／psi
1.0 e＋e－

VLL；

End

MC p p J/ ψ Dalitz plot

MC p J/ ψ mass

MC ppmass

Generated events

High MC Track Multiplicity

－Many secondary particles at $15 \mathrm{GeV} / \mathrm{c}$
－Also for reconstructable events（24．5\％）\rightarrow good pre－selection

$\mathrm{MC} \mathrm{e}{ }^{+}$Pt vs Pz

MC $p \theta$ vs P

$M C e^{+} \theta$ vs P

MC J/ $\psi \theta$ vs P

$M C e^{-} \theta$ vs P

Preselection of pand $e^{ \pm}$Candidates

－Protons： $0.5 \mathrm{GeV} / c<p<8.0 \mathrm{GeV} / c$ and $\theta<30^{\circ}$
－Electrons：more complicated cut needed \rightarrow use boundary of inner／outer ellipse to exclude empty region
－Ellipse：$\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
－R parameter：

$$
\begin{aligned}
& R_{i / o}=\sqrt{\left(\left(p_{z}-p_{i / o}\right) / a_{i / o}\right)^{2}+p_{t} / b_{i / o}{ }^{2}} \\
& R_{i}>0.9, R_{o}<1.1
\end{aligned}
$$

e^{+}inner R parameter (pre-fit) \qquad Entries
Mran 1.497
e^{-}inner R parameter (pre-fit) \qquad

e^{+}outer R parameter (pre-fit)
hPIEp_ro 1834

e^{-}outer R parameter (pre-fit)

MC $\mathrm{J} / \psi \mathrm{Pt}$ vs Pz (final)

$\mathrm{MC} \mathrm{e}{ }^{-} \mathrm{Pt}$ vs Pz (final)

MC p θ vs P (final)

MC J/ $\psi \theta$ vs P (final)

MC $e^{-} \theta$ vs P (final)

The $p p \rightarrow p p J / \psi$ Cross Section

－no data very close to threshold
－cross section will be small
－no case for initial commissioning
－should add $e^{+} e^{-}$and $\mu^{+} \mu^{-}$decay data
－$\sigma=0.1 \mathrm{nb}$ ，full $L, 2$ months \rightarrow
$\sim 1200 \mathrm{ppJ} / \psi$ events reconstr．

New LHCb data arXiv:1904.03947
3 states $\mathrm{P}_{\mathrm{c}}(4312)^{+}, \mathrm{P}_{\mathrm{c}}(4440)^{+}, \mathrm{P}_{\mathrm{c}}(4457)^{+}$

Generated events

 Simulation started
Conclusion \＆Outlook

－ 1.9 M events $p p \rightarrow p p J / \psi \rightarrow p p e^{+} e^{-}$including $P_{c}(4450)^{+}$ simulated and analyzed with treefitter \＆ideal PID
－ 9.6% reco efficiency， 98.0% purity
－issues：composite candidate mass constraint，P4 constraint，PID
－to do：
－open PID
－updated P_{c} resonance parameters
－S／B with hadronic background（FTF）
－up－to－date PandaRoot version
－$J / \psi \rightarrow \mu^{+} \mu^{-}$decay channel

