

Radiative corrections to $\bar{p}+p \rightarrow e^++e^-$

Cross sections and MC generator

Yu.M.Bystritskiy and V. A. Zykunov Joint Institute for Nuclear Research, Dubna, Russia A. Dbeyssi, <u>M. Zambrana, F. Maas</u> Helmholtz Institute Mainz, Germany <u>E. Tomasi-Gustafsson</u> CEA, IRFU, DPhN, and Université Paris-Saclay, France

Electromagnetic Form Factors

QED Radiative Corrections

- Must be applied to any process involving charged particles, in particular electrons
- Modify the <u>absolute value</u> of the experimental observables and <u>their dependence</u> from the relevant kinematical variables

Angular distribution

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\sigma_0}{\sigma_0} \left[1 + \frac{\mathcal{A}\cos^2\theta}{\mathcal{A}\cos^2\theta}\right]$$

Angular asymmetry

$$\mathcal{A} = \frac{\tau |G_M|^2 - |G_E|^2}{\tau |G_M|^2 + |G_E|^2} = \frac{\tau - \mathcal{R}^2}{\tau + \mathcal{R}^2}.$$
$$\mathcal{R} = |G_E| / |G_M|$$

$$\sigma_0 = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} \left(|G_M|^2 + \frac{1}{\tau}|G_M|^2 \right)$$

Egle Tomasi-Gustafsson

E

PandaROOT simulations on R=GE/GM

PHOTOS MC

A. Dbeyssi, PhD

Include radiation from final electron No interference

$$\frac{d\sigma^c}{d\Omega} = \frac{d\sigma^B}{d\Omega}(1+\delta),$$

PHYSICAL REVIEW D 82, 094016 (2010)

Radiative proton-antiproton annihilation to a lepton pair

A. I. Ahmadov,^{1,2,*} V. V. Bytev,^{1,†} E. A. Kuraev,^{1,‡} and E. Tomasi-Gustafsson^{3,§}

• Virtual and soft photon emission

- Hard photon emission $\bar{p}(p_{-}) + p(p_{+}) \rightarrow e^{+}(q_{+}) + e^{-}(q_{-}) + \gamma(k).$
- LLA- Structure Functions Kuraev, Fadin (1985)

Radiative corrections

at NLO, we have two different (i.e. non-interfering) final states:

* e^+e^- : born, virtual corrections (vacuum polarization, ...)

 $*e^+e^-\gamma$: real corrections (initial state radiation, final state radiation)

Egle Tomasi-Gustafsson

Radiative corrections

Real Corrections: the formalism depends on the photon kinematics: soft photon regime

- $E\gamma < \omega$ no experimental detection of the photon: the threshold ω is determined by theory/experiment
- The cross section is integrated over the photon degrees of freedom

hard photon regime

 $E\gamma > \omega$ the photon is detected in the experiment

the experiment is sensitive to the photon kinematics

Radiative corrections

• real corrections (ISR, FSR, interference) have been completely re-calculated [Ahmadov et al. does not separate explicitly ISR/FSR terms; [kinematic regime $s, t, u \gg M^2, m^2$ assumed in interference term not adequate for PANDA

followingF. A. Berends et al. Nucl. Phys. B 57 381 (1973)on $e^+e^- \rightarrow \mu^+\mu^-$ F. A. Berends et al. Nucl. Phys. B 63 381 (1973)on $e^+e^- \rightarrow \mu^+\mu^-$

in the soft photon limit: $E_\gamma < \omega = b \sqrt{s}/2$ $b < 10^{-2}$

- infrared divergences regularized by giving the photon a small mass λ (infrared cutoff) * real diagrams: $E_{\gamma} > \lambda = a\sqrt{s}$ $10^{-6} < a < 10^{-3}$ * virtual diagrams: $\int_{0} dk^{2} \rightarrow \int_{\lambda^{2}} dk^{2}$
- cancellation of divergences:

 $\delta_{e-vertex} + \delta_{FSR} = finite$ $\delta_{p-vertex} + \delta_{ISR} = finite$ $\delta_{box} + \delta_{interference ISR/FSR} = finite$

• full cross section is λ -independent (more accurately, λ -stable)

k

Soft and Virtual Photon Emission

Radiative cross section(soft and virtual RC)

Egle Tomasi-Gustafsson

Event Generator (soft and virtual RC)

MC: N=10⁶ generated events

Hard Photon Emission

Fully differential cross section as function of invariants

$$d\sigma_{H} = \frac{\alpha^{3}}{\pi^{2}s} \int (M_{\rm ISR} + M_{\rm FSR})(M_{\rm ISR} + M_{\rm FSR})^{+} \cdot \theta_{\omega} \cdot \theta_{P} \cdot d\Phi_{3},$$

$$(M_{\rm ISR} + M_{\rm FSR})(M_{\rm ISR} + M_{\rm FSR})^+ = R_{\rm ISR} + R_{\rm FSR} + R_{\rm INT} = \sum_k R_k.$$

Energy limits on the hard photon

$$\theta_{\omega} = \theta(p_0 - \omega)$$
 $\theta_P \equiv \theta(\Omega - p_0)$

Phase space

2

$$d\Phi_3 = \delta(p_1 + p_2 - k_1 - k_2 - p) \frac{d^3k_1}{2k_{10}} \frac{d^3k_2}{2k_{20}} \frac{d^3p}{2p_0}$$

°p₂

Θ.

 φ_5

 \vec{k}_1

p₅

 \overline{K}_{2}

Hard Photon Emission

- New calculation of hard photon emission:
- A.I. Ahmadov et al. Phys. Rev. D 82, 094016 (2010)
- The proton is treated as a point-like particle, exact for leptons
- J. Van de Wiele and S. Ong, Eur. Phys. J. A49, 18 (2013).
- Proton FFs are taken into account, but inconsistently (p* virtuality)

Unified treatement of soft and hard photon

A. G. Aleksejevs, S. G. Barkanova, and V. A. Zykunov, Phys. Atom. Nucl. 79, 78 (2016)

Invariants and physical variables

	Lorentz-invariant	$\bar{p} + p \rightarrow e^- + e^+$	$\bar{p} + p \rightarrow e^- + e^+ + \gamma$		
	$s = (p_1 + p_2)^2$	Eq. (2)	Eq. (2)		
	$t=(p_2-k_2)^2$	Eq. (3)	Eq. (44)		
	$u=(p_1-k_2)^2$	Eq. (4)	Eq. (46)		
	$z_1 = 2pp_1$	0	$z + v - v_1$		
	$v_1 = 2pp_2$	0	independent		
	$z = 2pk_1$	0	independent		
	$v = 2pk_2$	0	independent		
	$s_1 = (k_1 + k_2)^2$	S	s-z-v		
	$t_1 = (p_1 - k_1)^2$	t	$t + v - v_1$		
	$u_1 = (p_2 - k_1)^2$	и	$u + v_1 - z$		
s + t + u = 2	$m^2 + 2M^2 \approx M^2$	<i>s</i> -	$s + t + u = z + 2m^2 + 2M^2.$		
$= (p_1 + p_2)^2 = 4E^2, (2)$			2		
$= (p_2 - k_2)^2 = -\frac{s}{4}(1 + \beta^2 - 2\beta\cos\theta), (3) t = \frac{1}{2}(2M^2)$			$-2m^2 - s + z + \cos\theta \cdot \beta \sqrt{(s-z)^2 - 4m^2s}$. (44)		
$= (p_1 - k_2)^2 = -$	$-\frac{s}{4}(1+\beta^2+2\beta\cos\theta)$, (4) $u = \frac{1}{2} \Big(2M^2 + \Big)$	$2m^2 - s + z - \cos\theta \cdot \beta\sqrt{\alpha}$	$(s-z)^2 - 4m^2s$). (46)	

S

t

u

Cross section (invariants)

$$\sigma_{H} = \frac{\alpha^{3}}{8\pi s} \iiint \frac{dv dz dv_{1}}{\sqrt{R}} \frac{s-z}{s} \sum_{k} R_{k} \cdot \theta(R) \cdot \theta_{\omega} \cdot \theta_{P}.$$
$$d\Phi_{3} = \frac{\pi}{16\sqrt{\lambda(s, M^{2}, M^{2})}} \frac{dt dv dz dv_{1}}{\sqrt{-\Delta_{4}}} \quad \Delta_{4} = -R/16$$

$$R = -\det \begin{pmatrix} 2p_1p_1 & 2p_2p_1 & 2k_1p_1 & 2k_2p_1 \\ 2p_1p_2 & 2p_2p_2 & 2k_1p_2 & 2k_2p_2 \\ 2p_1k_1 & 2p_2k_1 & 2k_1k_1 & 2k_2k_1 \\ 2p_1k_2 & 2p_2k_2 & 2k_1k_2 & 2k_2k_2 \end{pmatrix}$$

$$\theta_P \equiv \theta(\Omega - p_0) = \theta \Big(\Omega - \frac{v+z}{2\sqrt{s}} \Big),$$

$$\theta_{\omega}=\theta(p_0-\omega)$$

Invariants and Physical Variables

$$\frac{d\sigma_{R}}{d\cos\theta} = \frac{\alpha^{3}}{4\pi s} \int_{\lambda}^{\Omega} dp_{0} |\vec{p}| \int_{0}^{\pi} d\theta_{p} \sin\theta_{p} \int_{0}^{2\pi} d\varphi_{p} \frac{|\vec{k}_{2}|}{k_{10}g(x_{0})} \sum_{k} R_{k}\theta_{P}.$$

$$g(x) = 1 + \frac{x(1 - |\vec{p}|A(x^{2} - m^{2})^{-1/2})}{\sqrt{x^{2} - 2|\vec{p}|A\sqrt{x^{2} - m^{2}} + |\vec{p}|^{2}}},$$

$$v_{1} = 2p_{0}p_{20} + 2|\vec{p}||\vec{p}_{2}|\cos\theta_{5},$$

$$z_{1} = 2p_{0}p_{10} - 2|\vec{p}||\vec{p}_{1}|\cos\theta_{5},$$

$$v = 2p_{0}k_{20} + 2|\vec{p}||\vec{k}_{2}|A,$$

$$z = 2p_{0}(\sqrt{s} - k_{20}) - 2|\vec{p}||\vec{k}_{2}|A.$$

 $A = \cos(\vec{p_5}, \vec{k_2}) = \sin\theta\sin\theta_5\cos\varphi_5 + \cos\theta\cos\theta_5.$

 $d\sigma$

$\overline{dsd\cos\theta_{\gamma}dE_{\gamma}d\phi_{\gamma}d\cos\theta_{e}}$

physical variables

 $d\sigma$

 $dsd\cos\theta_{\gamma}dE_{\gamma}d\phi_{\gamma}d\cos\theta_{e}$

physical variables

Conclusions

Status:

• A stand-alone MC generator is under test for

 $\bar{p}(p_{-}) + p(p_{+}) \rightarrow e^{+}(q_{+}) + e^{-}(q_{-}) + \gamma(k).$

• Soft, virtual, real, hard photon emission

What is next:

- Full understanding of the 3-particle final state distributions
- Study of numerical singularities
- Projections of physical spectra in the relevant variables
- Replace PHOTOS in PANDARoot for our reaction!