Application of the fast vectorised Kalman filter based track fit to the STAR experiment

Artemiy Belousov^{1,2}, Yuri Fisyak³, Ivan Kisel^{1,2,4}, Maksym Zyzak⁴

1 – Goethe-Universität Frankfurt, Frankfurt am Main, Germany
2 – Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
3 – Brookhaven National Laboratory, Upton, United States
4 – GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

DPG Spring Meeting, München, 20.03.2019

Challenges in CBM

- On-line reconstruction at the on-line farm with 60.000 CPU equivalent cores.
- High speed and efficiency of the reconstruction algorithms are required.
- The algorithms have to be highly parallelised and scalable.
- CBM event reconstruction: Kalman Filter and Cellular Automaton.

- CBM a future fixed-target heavy-ion experiment at FAIR, Darmstadt, Germany.
- 10⁵-10⁷ collisions per second.
- Up to 1000 charged particles/collision.
- Free streaming data.
- No hardware triggers.
- Online time-based event reconstruction and selection is required in the first trigger level.

Cellular Automaton Track Finder

Cellular Automaton:

- 1. Build short track segments.
- 2. Connect according to the track model, estimate a possible position on a track.
- 3. Tree structures appear, collect segments into track candidates.
- 4. Select the best track candidates.

Cellular Automaton:

- local w.r.t. data
- intrinsically parallel
- extremely simple
- very fast

Perfect for many-core CPU/GPU !

Track finder:

- 1. Kalman filter for track segments fit
- 2. The code is optimised with respect to both efficiency and time
- 3. The code is parallelised
 - Data level (SIMD instructions, 4 single-precision floating point calculations in parallel)
 - Task level (ITBB, parallelisation between cores)

Useful for complicated event topologies with large combinatorics and for parallel hardware

Track fit: Estimation of the track parameters at one or more hits along the track — Kalman Filter (KF)

STAR at BNL

- Collider experiment at RHIC, BNL
- Up to 200 AGeV Au-Au collisions
- Main detector TPC
- CA track finder is being developed in STAR within the FAIR Phase-0 program

Challenges:

- Increased RHIC luminosity
- Online HLT fast
- Global track finder has to be speed up significantly
- Upgrade the reconstruction algorithms for:
 - vectorization
 - multi-threading
 - many-core systems

20 March 2019

Integration of CA into STAR global track finder

- Global track finder in STAR (**Sti**) is based on track following:
 - 1. Create seed from TPC detector.
 - 2. Find track in TPC detector.
 - 3. Extend track to the outer ToF, BEMC and MTD detectors.

- For acceleration of the algorithm:
 - Done: integration the **CA** track finder as a seed finder for **Sti** -> **StiCA** track finder.
 - Planned: integrate the CA track fitter instead of Sti -> completely exclude Sti from the track reconstruction procedure.

- CA track finder, being a part of StiCA, spends only **10%** of the total time of finding tracks.
- The goal is to speed up the fitting of tracks, which is performed by Sti.
- CA track finder is fully vectorised and highly optimised and includes Kalman Filter based track fitter, which assumes:
 - simplified one-component constant magnetic field;

— optimised for TPC

- simplified uniform material description.
- For extrapolation of tracks to outer detectors, it is necessary to take into account the non-homogeneous magnetic field and the complex material structure.

Comparison of fit quality: residual

Fast CA fit

GenFit(Stx)

Sti fit

Comparison of fit quality: pulls

Fast CA fit

GenFit(Stx)

Sti fit

Measured calculation time (sec)

	Fast CA	Sti-like CA	Sti	GenFit(Stx)
Total/event	2.42	2.6	2.88	3.45
CPU/event	2.06	2.14	2.36	3.07
CA/event	0.038	0.1	0.038	0.038
Sti/event	0.44	0.52	0.76	_
Stx/event	—	—	—	1.31

Summary

- The Kalman filter method for reconstruction of charged particle trajectories in the TPC CA track finder for the STAR experiment is extended to accurately include the non-homogeneous magnetic field and detector material.
- The developed algorithm is a toolkit for the preparation of the track fitting procedure.
- The method shows correct distributions of the track parameter residuals and pulls, and χ^2 .

Plans

- Further optimise and vectorise the Kalman filter based track fit without loss of accuracy.
- Extend the SIMDised KF track fit to the outer ToF, BEMC and MTD detectors.
- Apply the developed methodology to the Kalman filter track fit in the CBM experiment.