DEVELOPMENT OF COOLING DEMONSTRATOR FOR THE CBM SILICON TRACKING SYSTEM (STS)

<u>K. Agarwal¹</u>, M. Kis², P. Kuhl², H.R. Schmidt^{1,2}, O. Vasylyev²

for the CBM Collaboration

¹ Eberhard Karls Universität Tübingen – Tübingen (DE)

² GSI Helmholtz Centre for Heavy Ion Research – Darmstadt (DE)

DPG Spring Meeting – München

20/03/2019

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Physikalisches Institut

INTRODUCTION TO CBM-STS

STS Features:

- 8 layers \rightarrow 896 silicon microstrip sensors
- Track Reconstruction, $\varepsilon \ge 98\%$
- Momentum Resolution, $\Delta p/p \approx 1.5\%$

Figure: Side-view of STS sensors with artistic illustration of a multi-strange hyperon ($\underline{=}$) decay in STS

INTRODUCTION TO CBM-STS

STS Features:

- 8 layers \rightarrow 896 silicon microstrip sensors
- Track Reconstruction, $\epsilon \ge 98\%$
- Momentum Resolution, $\Delta p/p \approx 1.5\%$
- Material Budget ~ 1.5 % X₀ per layer
- FEE and other detector infrastructure is placed outside detector acceptance
- Sensors connected to the FEE via microcables

Figure: Side-view of STS sensors on ladders with artistic illustration of a multi-strange hyperon (Ξ) decay in STS

INTRODUCTION TO CBM-STS

Х

Figure: Isometric-view of STS; Sensors with relevant infrastructure (i.e., FEE, cabling and cooling) located at acceptance periphary

Silicon Sensors:

- Expected power dissipation ~ 6 mW/cm² at -10°C at end-of-lifetime (fluence - 10¹⁴ n_{eq}(1 MeV)/cm²)
- Target Temp. ≤ -10°C, by min. additional % X₀ per layer
- Forced convective gas cooling

Silicon Sensors:

- Expected power dissipation ~ 6 mW/cm² at -10°C at end-of-lifetime (fluence - 10¹⁴ n_{eq}(1 MeV)/cm²)
- Target Temp. ≤ -10°C, by min. additional % X₀ per layer
- Forced convective gas cooling

Electronics and Power Cables:

- Expected power dissipation ~ 40kW in < 3.5 m³
- Target Temp. ≤ -10°C, to avoid any heat transfer to silicon sensors (only 10 – 50 cm away)
- Bi-phase CO₂ cooling is the first choice
 - High Volumetric HTC \rightarrow Smaller tubes
 - GWP = $1 \rightarrow$ Longer operational lifetime
 - Radiation hard
- Monophase 3M Novec 649 fluid as a backup

Silicon Sensors:

- Expected power dissipation ~ 6 mW/cm² at -10°C at end-of-lifetime (fluence - 10¹⁴ n_{eq}(1 MeV)/cm²)
- Target Temp. \leq -10°C, by min. additional % X₀ per layer
- Forced convective gas cooling

Electronics and Power Cables:

- Expected power dissipation ~ 40kW in < 3.5 m³
- Target Temp. ≤ -10°C, to avoid any heat transfer to silicon sensors (only 10 – 50 cm away)
- Bi-phase CO₂ cooling is the first choice
 - High Volumetric HTC → Smaller tubes
 - GWP = $1 \rightarrow$ Longer operational lifetime
 - Radiation hard
- Monophase 3M Novec 649 fluid as a backup

Thermal Enclosure:

- CF sandwiched foam (\sim 20 mm) \rightarrow Structural support
- Thermal and moisture tight (RH < 0.5% at 20°C)

Silicon Sensors:

- Expected power dissipation ~ 6 mW/cm² at -10°C at end-of-lifetime (fluence - 10¹⁴ n_{eq}(1 MeV)/cm²)
- Target Temp. ≤ -10°C, by min. additional % X₀ per layer
- Forced convective gas cooling

Electronics and Power Cables:

- Expected power dissipation ~ 40kW in < 3.5 m³
- Target Temp. ≤ -10°C, to avoid any heat transfer to silicon sensors (only 10 – 50 cm away)
- Bi-phase CO₂ cooling is the first choice
 - High Volumetric HTC \rightarrow Smaller tubes
 - GWP = $1 \rightarrow$ Longer operational lifetime
 - Radiation hard
- Monophase 3M Novec 649 fluid as a backup

Thermal Enclosure:

- CF sandwiched foam (\sim 20 mm) \rightarrow Structural support
- Thermal and moisture tight (RH < 0.5% at 20°C)

Experimental verification of all cooling concepts in a 'realisitc' setup with up to 3 half-layers (stations) <u>COOLING DEMONSTRATOR</u>

SILICON SENSOR COOLING

- Air nozzles outside detector acceptance delivers cold gas directly on the (dummy) sensors
- No additional % X₀ per layer
- Located between the ladders
- Easy integration
- Vibrational studies of the sensors will be subsequently studied

FEE COOLING

Each <u>FEB Box</u> derives it cooling from a <u>cooling plate</u> attached on the <u>C-Frame</u>

FEE COOLING – BIPHASE CO₂

THERMAL SIMULATIONS OF FEE – BIPHASE CO₂

THERMAL SIMULATIONS OF FEE – BIPHASE CO₂

20/10/2019 - DPG Spring Meeting (München)

THERMAL SIMULATIONS OF FEE – BIPHASE CO₂

Semi-emperical boiling flow model

- Heat Transfer Coefficient
- Pressure Drop
- Dry-out onset
- ✓ Cooling line dimensioning
- ✓ Mass flow estimation

- Thermal FEA model (SolidWorks)
 - Conduction (and Radiation, Convection)
 - (Thermal Interface Materials)
 - ✓ Maximum Temp.

- Coolant Temp. = -30°C
- Heat Load = 594 W
- Tube ID = 3.6 mm
- Tube Length = 2 m

- Mass Flow = 7 g/s
- Pressure Drop = 0.14 bar
- Dry-out margin = 56%
 (x_{dryout} = 0.63)

- Fair amount of flexibility in input parameters which could be determined computationally
- 1 kW CO₂ cooling plant in development at GSI

THERMAL SIMULATIONS OF FEE – MONOPHASE NOVEC 649

Biphase CO₂

✓ Great performance

- less mass flow
- low pressure drop
- smaller tubes
- uniform temperature

X Potentially difficult for commercial manufacturing (2PACL-type system)

Monophase NOVEC

X Relatively lower performance

- higher mass flow
- higher pressure drop
- larger tubes
- non-uniform temperature
- ✓ Easier commercial manufacturing

Thermal Simulations Of FEE – Monophase Novec 649

Biphase CO₂

✓ Great performance

- less mass flow
- low pressure drop
- smaller tubes
- uniform temperature
- X Potentially difficult for commercial manufacturing (2PACL-type system)
- Monophase NOVEC
 - X Relatively lower performance
 - higher mass flow
 - higher pressure drop
 - larger tubes
 - non-uniform temperature
 - ✓ Easier commercial manufacturing

- Coolant Temp. = -40°C
- Heat Load = 1080 W
- Tube ID = 5.4 mm
- Tube Length = 2.7 m

- Mass Flow = 150 g/s
- Pressure Drop = 1.25 bar

WORST CASE INITIAL CONDITIONS

- Fair amount of flexibility in input parameters which could be determined computationally
- Feasible alternative and details are in progess

CONCLUSIONS & OUTLOOK

- STS Heat Sources
 - Silicon sensors: 6 mW/cm² at -10°C → Forced gas convection via nozzles
 - Electronics: 40 kW \rightarrow Biphase CO₂ or Monophase NOVEC cooling
 - Ambient: 40 W/m² with 20 mm CF-Foam sandwich
- Models developed to do computational characterisation done for electronics cooling
 - Useful to determine operational parameters
 - Parallel efforts to check with CO₂ and NOVEC cooling with respective cooling plants
- Cooling demonstrator in progress to experimentally validate the cooling concepts
 - Testing upto 3 STS half-layers (or stations) in realistic constraints
 - Most of the part ordering done or is in progress

THANKS A LOT FOR YOUR ATTENTION ③

STS Features:

20/10/2019 - DPG Spring Meeting (München)

STS COOLING DEMONSTRATOR

Figure: CAD Front-view (Left) and Isometric-view (Right) of the upcoming STS Cooling Demonstrator (still in progress)

20/10/2019 - DPG Spring Meeting (München)

ELECTRONICS COOLING

1. Pair of Front-end Electronics Boards (FEBs) [Readout for 1 silicon sensor]

2. Series of FEBs assembled together: FEB Box [Readout for 5 sensors = ½ ladder]

