651 DDCCDD 2019 JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN excursion beyond the proton dripline D. Kostyleva^{1,2} and I. Mukha² for the EXPERT/Super-FRS Experiment Collaboration of FAIR ¹Justus-Liebig University Giessen, Giessen, Germany; ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany Towards the limits of existence of nuclear structure - How far beyond the dripline nuclear structure exists? In order to answer this, we performed the systematic studies of proton separation energies for Argon and Chlorine isotopic chains and took a look at the most remote from stability isotope 31K. These proton-unbound isotopes have been studied by measuring trajectories of their decay-in-flight products by using a tracking technique with microstrip detectors. The proton (2p) or three-proton (3p) emission processes have been detected in the measured angular correlations "heavy ion" (HI) + number of emitted protons. 22.46 4.702 Θ_{p-29S} double coincidence [mrad] Conventional method (well-established procedure [4-8]): tracking all decay products and obtaining relative angles between them hexp (c) simulation RMS $\theta_{p\text{-}HI}(\max) \sim \hat{k}_{p\text{-}HI}$ 1p decay energy of ³⁰Cl g.s. 0.48(2) MeV How nuclear structure information is derived Rest frame of mother Lab system Alternative method HI FRS acceptance mother (under investigation): Impact of p₁₁(HI) kinematically preferred case HI simulation mother square root fit function FRS in highresolution mode: $p/\Delta p = 16500$ HI 0.01 0.015 0.02 p Θ_{min} Qvalue [GeV] mother ^aNot clear whether this is a ground state or an excited state. ^bThis theoretical result is obtained with the three-body model (see [3] J. Giovinazzo, et al., Phys. Rev. Lett. 89, 102501 (2002) [6] X.-D. Xu et al., Phys. Rev. C 97, 034305 (2018) $\theta_{p ext{-}HI}$ ### 30Ar (a) intensity (counts) 31 K g.s. $T_{1/2}(^{31}K) < 10 ps$ 31**K*** (c) -30 -50 Position of vertex of decay (mm) ## Summary - Previously-unknown isotopes ^{28,30}Cl and ²⁹Ar - **Excited states in ^{28,30}Cl** - Excitation spectrum of ³¹Ar, isospin symmetry with ³¹Al - Limits of nuclear structure existence: ²⁶Ar and ²⁵Cl - $S_{2p}(^{31}Ar) = 6(34) \text{ kev}!$ - first Discovery and spectroscopy of three-proton emitter ³¹K #### Outlook - Large rms radius of ³¹Ar? - 2p-radioactivity of ³¹Ar - Charge-exchange reactions with ⁴⁸Ni, ⁶⁷Kr - Test of nuclear mass models a transition region to chaotic nuclear matter #### **Acknowledgments:** this work is supported in part Justus-Liebig University Giessen and the GSI under the JLU-GSI strategic Helmholtz partnership agreement, HGS-HIRe scholarship program. #### **References:** Fig. 6). [9] J. Tian et al., Phys. Rev. C 87, 014313 (2013)