

the RFQs in IMP

Yuan He On behalf of Linac Center Institute of Modern Physics, CAS

CW high-intensity RFQs activities in IMP

- Structure and Conditioning of the RFQs
- Problems happened to the RFQs
- How to make a stable RFQ always?

CW RFQs constructed in IMP

	ADS RFQ injector II	CMIF- RFQ	D-RFQ-973	LEAF	SSC-Linac
Project served	CiADS	CMIF	BisoL	HIAF	HIRFL
Freq. (MHz)	162.5	162.5	162.5	81.25	53.67
Туре	4-vane	4-vane	4-vane	4-vane	4-rod
Dipole mode	PiMS	PiMS	window	PiMS	-
Species	Proton	Deuteron	Deuteron	HI A/q=7	HI A/q=7
Vane V (kV)	65	65	60	70	70
I (emA)	10	10	50	2	0.5
Inj. E (keV)	35	40	40	98	25
Ex. E (MeV)	2.1	3.0	1	3.5	1
Кр	1.2	1.4	1.68	1.5	-
CW Op. (emA)	11	2.5 (P)	1.8 (H₂⁺)	0.5 (HI)	0.2 (HI)
First beam	Jun. 2014	Nov. 2017	Jun. 2018	Feb. 2018	Jan. 2015
Institution	IMP/LBL	IMP	PKU/IMP	IMP	IMP/PKU

Chinese ADS Front-end Demo linac (CAFe

• Supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences.

- Apr. 17 to Jun. 6 '14, condition to 90 kW
- June 6th, 2014, the first beam, 2.16 MeV
- June 21st, the first CW beam @ 2 mA
- June 30th, 10 mA, CW, 21 kW, 4.5 hours, transmission >97%
- **CW RF Operation 5904 hours**
- Offline in Jan. 2018

- Nov. 2017, short pulse condition to 135 kW
- Online in Oct. 2018
- Operation from Nov. 2018, RF Operation time, pulse, 312 hours
- 2017.11.15, H⁺, 3.4 mA; H₂⁺, 7.8mA
- 2018.12.17-19, ⁴He²⁺, 46 hours

- Feb. 2018, condition to 1.1 nominated power in 44 hours; 200 uA CW ⁴He⁺ beam, 100 uA CW ¹⁴N²⁺, energy is 0.5 MeV/u
- > Operation time, CW, 589 hours

CW high-intensity RFQs activities in IMP

- Structure and Conditioning of the RFQs
- Problems happened to the RFQs
- How to make a stable RFQ always?

Yuan He, April 15-16, 2019, Heidelberg, Germany

Thermal analysis of the cavity body IMP

 $70 \sim 105$ W for each Max. Temp.: 41°C

Max heat flux 28.92 W/cm²; Max temp of cutbacks 48.0 °C

25.156

24,497 23.638 23.178 22.519 21.859 M

Max. Temp.: 30°C

Cooling Water Loops

10

Conditioning of ADS RFQ

Tmax=33°C

Tmax=30°C

- Max. T: 22.7° C, rised 2.7° C
- max deform.: 21.4 μm
- max. stress: 10.99 MPa
- SEY < 1 at coupler

Conditioning of LEAF RFQ

High RF Conditioning process of LEAF RFQ

- Keep CW power conditioning
- 44 hours to nominal voltage 70 kV
- Arcing when power was higher than 70 kW

o-**Ø**-🌯

Conditioning of D-RFQ-973

CW high-intensity RFQs activities in IMP

- Structure and conditioning of the RFQs
- Problems happened to the RFQs
- How to make a stable RFQ always?

Aug 12, 2014, after conditioning and cw beam commissioning.

Temp. Max 21 °C

Apr., 2019, checking after 6000 hours operation.

- End-plate of the entrance is near two times farer from electrodes than one of the exit.
- Due to beam loss of H_2^+ and H_3^+ , ۲ and than gas releasing?
- Due to worse vacuum (1E-4 Pa) at entrance?

Beam Loss Simulation of H₂⁺, H₃⁺

5% of H2+ and H3+ are loss in the entrance of 1.5 m of RFQ, 0.1% is on the tips.

- Can not achieve nominal field after long term conditioning.
- The max CW power was 110 kW. 100 kW was relatively stable.
- Heavy discharge hapend in PiMS hole.
- Multipactor?

Aug 12, 2014, after conditioning and cw beam.

Apr., 2019, checking after 6000 hours operation.

Multipactor simulation in CMIF RFQ

Multipactor of Coupler of ADS RFQ

Discharge w/o Arc (spark)

Discharge of LEAF-RFQ (1/2hours, 60 kW)

ADS RFQ

Blue mark between sections

D-RFQ-973

Yuan He, April 15-16, 2019, Heidelberg, Germany

CW high-intensity RFQs activities in IMP

- Structure and conditioning of the RFQs
- Problems happened to the RFQs
- How to make a stable RFQ always?

	radial matching gap (mm)	fringe- field gap (mm)	Aperture on end- plates	voltage (kV)	vendor
ADS	10.040	5.987	10/15	65	KJTJ(IMP)
CMIF	9.704	5.295	10/15	65	KJTJ(IMP)
LEAF	11.019	5.579		70	KeLin
973	8.011	7.988	40/40	60	KJTJ(IMP)

	RO (mm)	a (mm)	max m	kp	vendor
ADS	5.731	3.16	2.376	1.17	KJTJ(IMP)
CMIF	4.807	2.74	2.279	1.4	KJTJ(IMP)
LEAF	5.805	3.63	2.035	1.55	KeLin
973	3.477-5.971	2.63	1.86	1.68	KJTJ(IMP)

Lessons from the bad experience of ADS and especially CMIF RFQ:

- To optimize Bpeak/V(Eacc), Epeak/V(Eacc), especially at the corner of electrodes and end plates.
- To optimize the multipactor, especially the coupler, PiMS, etc. Try to make SEY < 1.
- To optimize structure of contact. RF fingers or springs will be burned due to bad contact.
- To put "cleanness" on the "first" position. It is not only in the stage of assembly, tuning and installing, but also in the stage of fabrication from acid washing to brazing.
- Any more.....?

Assembly and tuning in cleanroom

The first ADS RFQ was in dirty surroundings. CMIF and D-RFQ-973 were in clean room.

Optimize E_{peak} and B_{peak}

●-*₩*-∛

Yuan He, April 15-16, 2019, Heidelberg, Germany

LBL: Derun Li, Steve Virostek, Matt Hoff, John Staples

FNAL: Sergei Nagaitsev, Gennady Romanov

PKU: Kun Zhu, Yuanrong Lu, Pinpin Gan, Qi Fu

IMP: Chenxing Li, Weiping Dou, Liang Lu, Xuejun Yin, Bin Zhang,

Xiaofeng Jin, Zhijun Wang, Wei Ma

Thanks for your attention

