High Current Uranium Beam Measurements at GSI high intensity RFQ operation experience - from beam point of view *Winfried Barth, GSI&HIM*

1. Introduction

2. Operation experience

- HSI-commissioning (1999)
- First acceleration of U⁴⁺ beam at HSI (2000)
- HSI-RFQ-Upgrade I (2004)
- HSI-RFQ-Upgrade II (2010)

2. Further RFQ-Optimization (2014-2016)

3. Pushing the limits for uranium beam (and p⁺) operation

- 4. Beam brilliance analysis
- 5. Summary

1. Introduction The GSI <u>UNI</u>versal <u>Linear AC</u>celerator

UNILAC-Design Beam Parameters

Commissioning of the 1.4 MeV/u High Current Heavy Ion Linac at GSI, Winfried Barth

DESIGN BEAM PARAMETERS AT UNILAC AND SIS INJECTION					
Requirements to obtain the SIS space charge limit (a twentyfold multiturn injection is supposed) FAIR					
	HSI entrance	HSI exit	Alvarez entrance	SIS injection	SIS injection
ION SPECIES	238U4+	²³⁸ U ⁴⁺	238U28+	²³⁸ U ⁷³⁺	²³⁸ U ²⁸⁺
El. Current [mA]	16.5	15	12.5	4.6	15
Part. per 100µs pulse	2.6·10 ¹²	2.3·10 ¹²	2.8.1011	4.2·10 ¹⁰	3.5·10 ¹¹
Energy [MeV/u]	0.0022	1.4	1.4	11.4	11.4
ΔW/W	-	±4·10 ⁻³	±2·10 ⁻³	±2·10 ⁻³	±2·10 ⁻³
ε _{n.x.} [mm <u>mrad]</u>	0.3	0.5	0.75	0.8	0.8-1.1
ε _{n.y.} [mm_mrad]	0.3	0.5	0.75	2.5	"

HSI-Radio Frequency Quadrupole (1999)

W. Barth, High Intensity RFQ meets Reality, RFQ-Operation Experience, 15-16.04.2019

R.M.Vengrov, V.L.Zviagintsev, S.G.Yaramishev

HSI-commissioning

Commissioning of the 1.4 MeV/u High Current Heavy Ion Linac at GSI, Winfried Barth

HIGH CURRENT INJECTOR ASSEMBLY&COMMISSIONING MILESTONES

	Dec. 98	Last operation-shift with Wideröe injector
<	JanFeb. 99	Disassembly of <u>Wideröe</u> and <u>rf</u> , installation of LEBT section
	March 99	Successful commissioning of LEBT
	April-May 99	Mounting IH-RFQ and first acceleration up to 120 keV/u
	June 99	Beam tests with <u>Superlens</u> , achieving 10 mA Ar ¹⁺ at RFQ exit
	July 99	Assembly of IH1, verification of beam accelera- tion up to 743 keV/u
	August 99	Completing HSI with IH2 and stripper Section
	2.Sept. 99	Proof of acceleration up to 1.4 MeV/u, further on: 90% IH-transmission for highest argon intensities (8 mA)
	October 99	Upgrade of transfer line to SIS and mounting of matching section to Alvarez
	November 99	Establishing three beam operation, complete Alvarez transmission at highest current
•	Since Nov. 99	HSI in routine operation
<	February 2000	Achievement of the 90%-rf levels, first 1.4 MeV/u U ⁴⁺ beam (3 mA)
-]	Linac 2000 —	GSI

Commissioning of the 1.4 MeV/u High Current Heavy Ion Linac at GSI, Winfried Barth

CONCLUSION

- The new High Current Injector was mounted and commissioned with great success.
- The measured beam parameters, as energy, bunch width, energy spread, after each commissioning step fits to calculation.
- No particle loss at beam currents up to 40% of the design intensity.
- The RFQ design current limit (for Ar¹⁺) was reached; significant particle loss at the space charge limit is not completely understood.
- Up to the highest beam intensities the transmission of the IH-DTL is as expected.
- The transverse emittance was measured along the whole <u>Unilac</u> the emittance growth is close to the simulation.
- 10 mA (Ar¹⁰⁺) were reached after the Alvarez-DTL
- 90% of the design <u>rf</u>-level was reached; stable operation with a U⁴⁺ beam (3 mA) in the HSI.
- HSI in routine operation (including dual beam operation) since November 1999.
- Outlook: filling the synchrotron up to the space charge limit for high mass numbers.

LINAC 2000

W. Barth, High Intensity RFQ meets Reality, RFQ-Operation Experience, 15-16.04.2019

RFQ-Commissioning

W. Barth, High Intensity RFQ meets Reality, RFQ-Operation Experience, 15-16.04.2019

HSI-Conditioning

* routinely rf-conditioning with low duty cycle (3 Hz, 1ms) rf-pulses in a time sharing mode during beam time (50 Hz-mode) – leads to a high availability of rf-amplitudes for the U^{4+} -operation.

1/29/2002

W. Barth

HSI-RFQ-RF-Conditioning (1999-2003)

W. Barth, High Intensity RFQ meets Reality, RFQ-Operation Experience, 15-16.04.2019

RFQ-Upgrade I (2004)

RFQ-Upgrade I: New electrodes

after assembly

before copper plating

after disassembly

RFQ-Upgrade I: Modified IRM

LEBT-QQ Beam Measurements

RFQ-Upgrade II (2009)

HSI-RFQ	New Design	Existing Design (up to 2008)
Electrode voltage / kV	155	125
Av. aperture radius / cm	0.6	0.54 - 0.52 - 0.77
Electrode width / cm	0.846	0.93 - 0.89 - 1.08
Maximum field / kV/cm	312.0	318.5
Modulation	1.012 - 1.93	1.00 - 2.09
Min. transv. phase advance / rad	0.555	0.45
Synch. Phase, degrees	-90 ⁰ 28 ⁰	-90 ⁰ 34 ⁰
Min. aperture radius, cm	0.410	0.381
Norm. transv. acceptance / μm	0.856	0.73
Number of cells with modulation	394	343
Length of electrodes, cm	921.74	921.74

RFQ Upgrade II: Beam commissioning

	Table 4. 1151 maximum nigh current transmission				
			U ⁴⁺	A	\mathbf{r}^{1+}
H. Vormann.	Beam current/ Transmission	before upgrade	2010 (2009)	before upgrade	2009
MOP040	Before QQ	12.4 mA	7 mA (11)	13.5 mA	12.5 mA
	Behind RFQ	7.9 mA	6.6 mA (7.5)	7.6 mA	9.5 mA
Linac 2010	Transm. RFQ	64 %	95 % (70%)	56 %	85 %
	Behind HSI	6.6 mA	5.1 mA (6.0)	5.9 mA	8.5 mA
	Transm. HSI	50 %	72 % (60%)	44 %	56 %

Table 4: USI maximum high ourrant transmission

100% HSI-beam transmission for low current beams from PIG ion source (long term operation)!

Further RFQ RF-Optimization (2014-2016)

GSI

HIM

3. Pushing the limits for uranium beam operation

- Ion Source: Applying a multi-aperture (7-hole) extraction system at the VARIS ion source → Increased U⁴⁺-intensity and improved primary beam brilliance
- Low Energy Beam Transport: Improved LEBT-performance and RFQ-Matching using high brilliance uranium beam from the VARIS \rightarrow 75% RFQ-Transmission (I_{out} = 11.25 emA)
- RFQ: RF optimization by adjusting plunger positions at the HSI RFQ tank and extensive rfconditioning → Reduction of forwarded rf-power, yielding for reliable high-current uranium beam operation.
- MEBT: Optimizing the between RFQ and IH DTL by increasing the transverse and longitudinal focusing strength (3%) → Reduction of beam loss, stable high current operation
- 1.4 MeV/u-Transport Line: Adapting the quadrupole channel (matching the gas stripper) \rightarrow 90% beam transmission, U⁴⁺ beam current of 7.6 emA available for heavy ion stripping.

Particle Stripping Efficiency

Beam Energy Loss:

U ²⁸⁺	N ₂ -jet (max.)	14±5 keV/u
U ²⁸⁺	Pulsed H ₂ -stripper cell (7.5 MPa)	35±5 keV/u
U ²⁹⁺	Pulsed H ₂ -stripper cell (12.0 MPa)	60±5 keV/u

Comparison of HSI-Transmission

Uranium High Current Injector-Performance

W. Barth, "Acceleration of Heavy Ion Beams with a Superconducting cw-Linac at GSI", GSI-Acc. Seminar, April/11/2019

GSI

HIM Helmholtz-Institut Mainz

²³⁸U²⁹⁺-Current Measurements at 1.4 MeV/u

U²⁸⁺ beam emittance at 1.4 MeV/u

HSI-IH2-Simulationen

Exit particle distribution immediately behind of IH tank 2 at the design current of 16.5 emA and A/q = 65. The 90 % emittance values correspond to the plotted ellipses; $N_{tot} = 1768$ particles.

 $\Delta B = B_{gem}/B_{design} = 1.18$

Beam emittance analysis

Beam Brilliance analysis

High intensity proton beam acceleration at GSI UNILAC

How to use a heavy ion machine for acceleration of high intensity proton beams?

High intensity proton beams at GSI-UNILAC

3 mA, p+ (UNILAC) => 1.5e12 (SIS18) => 25% of FAIR-requirement

51

Front to end emittance-measurements

W. Barth, et al., Phys. Rev. ST Accel. & Beams 18, 050102 (2015)

Emittance Beam Analysis

Proton beam emittance

Uranium beam emittance

Summary

- RFQ-commissioning (1999) successfully accomplished with high current argon beam
- First uranium (4+) beam commissioning in 2000 after careful rf-conditioning
- RFQ-Upgrade I (2004) after significant surface degradation during 5 years operation; newly designed IRM; increased beam transmission
- RFQ-Upgrade II (2009) after again significant surface degradation during 5 years operation; copper plated electrodes; new electrode design with increased rf-voltage and aperture and slightly reduced max. field; increased beam transmission
- No electrode exchange since 10 years! Almost 18 months of shutdown (2016 2018).
- Despite further surface degradations the RFQ RF-performance could be dramatically improved: 600kW forwarded power at U⁴⁺ voltage level.
- As a result a new record RFQ high current Uranium beam intensity (11.25 emA) at sufficiently high beam transmission (75%) has been achieved in 2016.
- The horizontal Uranium beam brilliance growths strongly with the beam intensity; for higher currents the core of the uranium phase space distribution perhaps remains constant during acceleration and beam transport
- World record U²⁸⁺ beam intensity (11.1 emA) at low emittance (1.4 MeV/u)
- The conducted high current proton beam emittance measurement throughout the UNILAC shows a loss of horizontal beam brilliance of 23%
- <u>Remark</u>: Beam intensity attenuation concept (LEBT-QQ) => permanent particle loss inside RFQ during beam operation!

Thank You for Your Attention!