RFQs in BNL

M. Okamura Collider-Accelerator Department Brookhaven National Laboratory

Three user facilities using RFQ at BNL

NASA Space Radiation Laboratory Many kinds of heavy ion beams

Relativistic Heavy Ion Collider Polarized proton and gold beams

Brookhaven Linac Isotope Producer Negative proton beam

RFQ's at BNL

Polarized H⁻ RFQ
 20 keV →750 keV 1985-1999

High current H⁻ RFQ
 35 keV →750 keV 1987-

DPIS TEST RFQ
 Replaceable vane 2005-

EBIS RFQ
 16.2 keV/u →300 keV/u 2009-

Polarized H- RFQ

20 keV →750 keV 1985-1999

TABLE I RFQ DESIGN PARAMETERS

Frequency	201.25 MHz		
Ion Species	H-		
Cavity Length	148.27 cm		
Cavity Diameter	32.4 cm		
No. of Cells (in vane)	144		
Vane Length	130.28 cm		
Intervane Voltage	63 kV		
Peak Surface Field	20.9 MV/m		
Average Radius, r	0.4638 cm		
Final Radius, ar	0.299 cm		
Final Modulation, m	1.969		
Initial Synchronous Phase, ϕ_i	-90°		
Final Synchronous Phase, \$	-30°		
Estimated Peak RF Power	60 kW (120 kW		
	operating)		
Nominal Current Limit	56 mA		
Nominal Acceptance	2.7 mm-mr		
	(normalized)		
Initial Energy	20 keV		
Final Energy	760 keV		

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

DESIGN, FABRICATION, AND TESTING OF THE BNL RADIO FREQUENCY QUADRUPOLE ACCELERATOR*

H. Brown, T. Clifford, S. Giordano, F. Khiari,# R. McKenzie-Wilson, M. Puglisi,+ P. Warner

Brookhaven National Laboratory, Associated Universities, Inc. Upton, New York 11973 U.S.A.

Dedicated to polarized proton beam. The injection energy was 20 keV.

Polarized H⁻ RFQ

20 keV →750 keV 1985-1999

- Four vane structure
- Designed and built at BNL.
- RF power fed from 8
 loops.
- Many tuner ports.
- Capacitive tuners at end plates.
- The first beam at Sep.
 21, 1985 with 20 uA 80%
 Tr.
- 700 uS at 5 Hz

Polarized H⁻ RFQ

20 keV →750 keV 1985-1999

High current H⁻ RFQ 35 keV →750 keV 1987-

Table 1: Summary of RFQ Parameters

Ion	н±	
Frequency	201.25	MHz
Energy	35 - 753	keV
Current limit	> 100	mA
Normalized emittance	0.1π	cm-mrad
Vane Length	161.89	cm
Mean radius (r _o)	0.418	cm
Surface field	20.3	MV/m
Peak cavity power	100.5	kW
Max duty factor	0.007	
Stored energy	0.5	Joules

Designed and fabricated by LBL The third RFQ by LBL Operated at 6.67 Hz Constantly supplying more than 50 mA to BLIP Installed on Dec. 1988 Almost no trouble

Our record output : 100 mA

BNL and Fermi Lab worked with LBL on a RFQ design 200 Mhz RFQ built for BNL – Fermi canceled their option

RFQ (750 keV) and Alvarez (200 MeV)

For RHIC: 200 MeV, 500 μ A beam current, 400 μ s pulse length, polarization as high as possible, and emittance as low as possible.

For BLIP: 66 - 200 MeV, 600 µs pulse length, current as high as possible (~50 mA), uniform beam distribution at the target, and losses as low as

6.67 Hz operation: two pulses per every 4 seconds are polarized beam for RHIC. The rest of pulses are for isotope production (BLIP).

DPIS TEST RFQ

First beam: Dec. 14, 2005 60 mA Al^{9+, 10+ and 11+} beam

Built by Frankfurt Univ.

100 MHz, 0.5 % duty Total length 2.0 m

DPIS TEST RFQ

@Frankfurt University

Analyzed beam

12

10

time [µs]

14

. п.в

2

Peak current : 35.8 mA Pulse width : 2.1 μs Number of particles : 1.2×10¹¹

Peak current : 32.8 mA Pulse width : 1.6 μ s Number of particles : 5.2×10¹⁰

Applied Physics Letters 105, 193506 (2014); doi: 10.1063/1.4902021

BROOKHAVEN

NATIONAL LABORATORY

The first beam at bench: Jan. 18, 2009 Commissioning on line: Mar. 2010 Constructed by Frankfurt University

Frequency	100.625 MHz	
Input energy	17 keV/u	
Output energy	0.3 MeV/u	
Mass to charge ratio	6.25	
Beam current	10 mA	
Outp trans. emitt rms norm. 90%	$< 0.38 \pi$ mm mrad	
Output long. emittance 90%	< 220 deg keV/u	
Transmission	98%	
Electrode voltage	70 kV	
RFQ length	3.1 m	
Cell number	189	
Aperture min - max	2.96-5.25 mm	

4-Rod-RFQ	100.625 MHz	
Tank diameter	350 mm	
Tank length	3100mm	
Beam axis height	147 mm	
Stem number	20	
Stem distance / thickness	158 mm / 10mm	
Aperture	5.2-2.96 mm	
Modulation factor	1-1.99	

LION for RHIC

	Days
Run14 Au	34
Run15 Au	43
Run15 Al	15
Run16 Au	200
Run1/7 Au	68
Run 18 ⁹⁶ Zr	97
Run18 Au	41

or

WEEKS		
Run14 Au	4.9	
Run15 Au	6.1	
Run15 Al	2.1	
Run16 Au	28.6	
Run17 Au	9.7	
Run18 ⁹⁶ Zr	13.9	
Run18 Au	5.9	

RHIC-EBIS for NSRL

- Since Run16, oxygen was provided from LION
- Since Run17, rapid species change from ion source to NSRL was tested, and fully automated GCR simulator mode was developed
- Since Run18, GCR simulator mode has been routinely used (>150 switched per day is possible)

Vane alignment was redone in 2013 Summer shut down period.

RF feed loop was retuned in 2017.

The RFQ was designed to accelerate various species, from He²⁺ to Au³²⁺. Depend on the operation schedule, the RF amplitude changes drastically. About 140 kW peak power for Au³²⁺ (A/q = 1/6.2), 20 kW for C6⁺.

Vane realignment, July 2013

The resonating structure can be taken out easily and we can directly measure vane positions. Faro gage or laser tracker were used.

RF field distribution adjustment, Aug. 2013

After a long time operation of lower power condition, it takes a few days to recover discharge limit for high power operation.

NATIONAL LABORATORY

Jan 9, 2017, RF loop coupling adjustment

Tuner position was fixed at 45.75 mm(Upstream) and 47.69 mm(Downstream)				
	Before adjustment	After adjustment,	After adjustment,	After adjustment,
	(in vacuum)	lid open (in air)	lid close (in air)	(in vacuum)
f0 (MHz)	100.6256	100.596	100.598	100.626
Loss (dB)	-24.547	-53.63	-55.00	-56.2
Q	2024	2096	2124	2129
Ζ(Ω)	50.7	49.91	50.07	50.07

EBIS RFQ 16.2 keV/u → 300 keV/u 2009-

6/7/2018 12 pulses ⁹⁶Zr + NSRL (Fe, H (not from EBIS), He, O, Si)

4/9/2019 12 pulses Au + NSRL (Si, Ti, Fe)

4/9/2019 12 pulses Au + NSRL (Si, Ti, Fe)

4/9/2019 12 pulses Au + NSRL (Si, Ti, Fe)

Summary

- We have experiences of four vane, four rod, proton, heavy ion RFQ accelerators.
- The first RFQ for polarized negative proton beam was shut down. Many troubles had been reported.
- The second negative proton RFQ provided by LBL has been working good for more than 30 years.
- Our machines operate with only low duty factor. So far, we have not met serious failures for decades.

