

Detector Infrastructure: HV

CBM-TRD Retreat, Schloß Waldthausen 27–29 March 2019

Philipp Kähler

Institut für Kernphysik, WWU Münster

MWPC Anode Currents

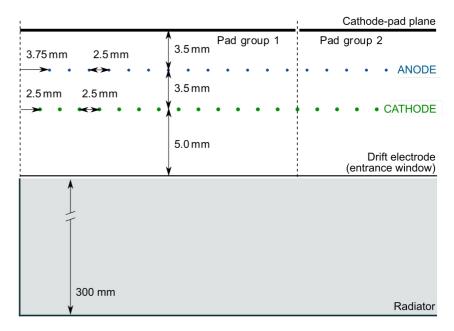
Currents can be calculated from the ionisation process

- Per length of anode wire: <u>up to</u> j_w = 3.3 nA / cm expected

• Anode current in 54 x 54 cm²:

- Up to 38.5 μA per module assumed 50 kHz / cm²

• Anode current in 96 x 96 cm²:

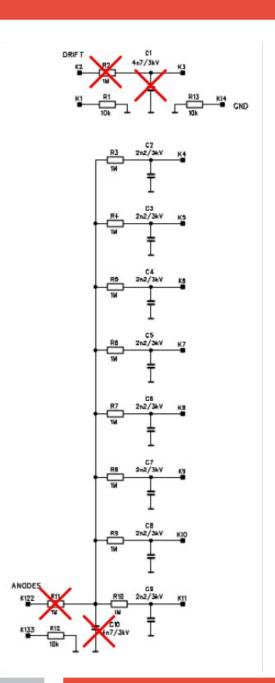

- Up to 12.2 μA per module assumed 10 kHz / cm²

Supply with one channel per module favoured

$$j_w = n \cdot \epsilon_{\text{MIP}} \cdot k_{\text{particle}} \cdot L \cdot W_{\text{XeCO}_2}^{-1} \cdot G \cdot e \cdot \lambda^{-1}$$

with

Variable	Value	Interpretation
n	$100 \; \rm kHz \; cm^{-2}$	Track rate density
$\epsilon_{ ext{MIP}}$	$5~\mathrm{keV}~\mathrm{cm}^{-1}$	Energy loss of minimum-ionising particle
$k_{\rm particle}$	1.5	Factor from minimum ionisation to mean energy loss
Ĺ	1.2 cm	Track length in active volume (straight case)
W_{XeCO_2}	22 eV e^{-1}	Ionisation work per electron
G	2000	Gas amplification
e	$1.6 \cdot 10^{-19} \text{ C}$	Elementary charge
λ	$4~\mathrm{cm}^{-1}$	Anode wire length per area


HV Filter Board

ALICE-TRD: ceramic capacitors

- Significant failure rate during Run 1 and Run 2, repair during LS2, real test in Run 3 (March 2021)
- Tested with > 5000 HV cycles, 2.5 kV, current lim: 11.4 A
- Leakage currents not significantly changed, comparable conditioning behaviour (order of few minutes)
- Neutron exposition test starting now
- Capacitor reliability: strong doubts

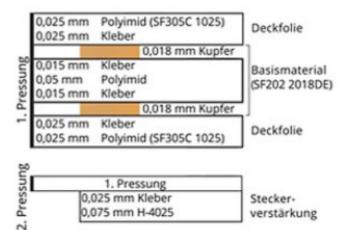
Capacitance aims

- Noise filter
- Quick supply, overall and segmented
- But: cabling already in comparable cap domain

HV Filter Board

Suggest (conservative)

- Design filterboard with capacitors, decision on equipment in 2021
- Increase distances on board (humidity resilience)


Prototyping: self-capacitive board

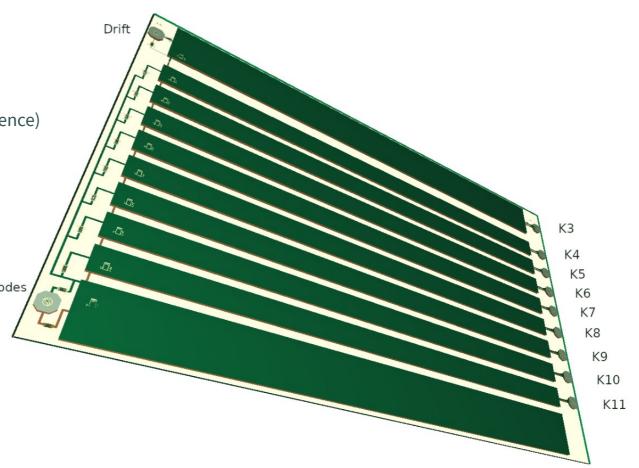
- Two-sided 50 μm Kapton design
- Capacitance by Cu-Kapton-Cu layout
- If usage considered: separation into anode and cathode board to avoid leakage currents

Lagenaufbau Flex Pool

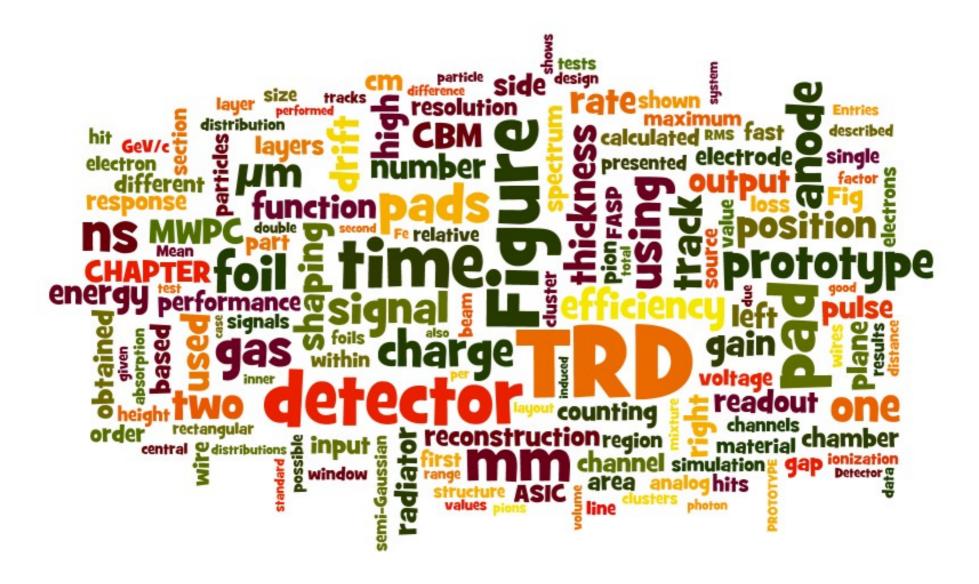
Lagen: 2

Stärke: 0,2 mm ohne Steckerverstärkung

HV Filter Board


Suggest (conservative)

- Design filterboard with capacitors, decision on equipment in 2021


- Increase distances on board (humidity resilience)

Prototyping: self-capacitive board

- **-** Two-sided 50 μm Kapton design
- Capacitance by Cu-Kapton-Cu layout
- If usage considered: separation into anode and cathode board to avoid leakage currents

